Page 1 of 12 (224 posts)

  • talks about »
  • gis

Tags

Last update:
Wed Nov 20 14:40:16 2019

A Django site.

QGIS Planet

Folium vs. hvplot for interactive maps of Point GeoDataFrames

In the previous post, I showed how Folium can be used to create interactive maps of GeoPandas GeoDataFrames. Today’s post continues this theme. Specifically, it compares Folium to another dataviz library called hvplot. hvplot also recently added support for GeoDataFrames, so it’s interesting to see how these different solutions compare.

Minimum viable

The following snippets show the minimum code I found to put a GeoDataFrame of Points onto a map with either Folium or hvplot.

Folium does not automatically zoom to the data extent and I didn’t find a way to add the whole GeoDataFrame of Points without looping through the rows individually:

Hvplot on the other hand registers the hvplot function directly with the GeoDataFrame. This makes it as convenient to use as the original GeoPandas plot function. It also zooms to the data extent:

Standard interaction and zoom to area of interest

The following snippets ensure that the map is set to a useful extent and the map tools enable panning and zooming.

With Folium, we have to set the map center and the zoom. The map tools are Leaflet defaults, so panning and zooming work as expected:

Since hvplot does not come with mouse wheel zoom enabled by default, we need to set that:

Color by attribute

Finally, for many maps, we want to show the point location as well as an attribute value.

To create a continuous color ramp for a numeric value, we can use branca.colormap to define the marker fill color:

In hvplot, it is sufficient to specify the attribute of interest:

I’m pretty impressed with hvplot. The integration with GeoPandas is very smooth. Just don’t forget to set the geo=True parameter if you want to plot lat/lon geometries.

Folium seems less straightforward for this use case. Maybe I missed some option similar to the Choropleth function that I showed in the previous post.

Interactive plots for GeoPandas GeoDataFrames of LineStrings

GeoPandas makes it easy to create basic visualizations of GeoDataFrames:

However, if we want interactive plots, we need additional libraries. Folium (which is built on Leaflet) is a great option. However, all examples for plotting GeoDataFrames that I found focused on point or polygon data. So here is what I found to work for GeoDataFrames of LineStrings:

First, some imports:

import pandas as pd
import geopandas
import folium

Loading the data:

graph = geopandas.read_file('data/population_test-routes-geom.csv')
graph.crs = {'init' :'epsg:4326'}

Creating the map using folium.Choropleth:

m = folium.Map([48.2, 16.4], zoom_start=10)

folium.Choropleth(
    graph[graph.geometry.length>0.001],
    line_weight=3,
    line_color='blue'
).add_to(m)

m

I also tried using folium.PolyLine which seemed like the more obvious choice but does not seem to accept GeoDataFrames as input. Instead, it expects a list of coordinate pairs and of course it expects them to be in the opposite order that Shapely.LineString.coords provides … Oh the joys of geodata!

In any case, I had to limit the number of features that get plotted because Folium refuses to plot all 8778 features at once. I decided to filter by line length because drawing really short lines is pointless for my overview visualization anyway.

(Fr) Rechercher une adresse avec QGIS

Sorry, this entry is only available in French.

QGIS Versioning now supports foreign keys!

QGIS-versioning is a QGIS and PostGIS plugin dedicated to data versioning and history management. It supports :

  • Keeping full table history with all modifications
  • Transparent access to current data
  • Versioning tables with branches
  • Work offline
  • Work on a data subset
  • Conflict management with a GUI

QGIS versioning conflict management

In a previous blog article we detailed how QGIS versioning can manage data history, branches, and work offline with PostGIS-stored data and QGIS. We recently added foreign key support to QGIS versioning so you can now historize any complex database schema.

This QGIS plugin is available in the official QGIS plugin repository, and you can fork it on GitHub too !

Foreign key support

TL;DR

When a user decides to historize its PostgreSQL database with QGIS-versioning, the plugin alters the existing database schema and adds new fields in order to track down the different versions of a single table row. Every access to these versioned tables are subsequently made through updatable views in order to automatically fill in the new versioning fields.

Up to now, it was not possible to deal with primary keys and foreign keys : the original tables had to be constraints-free.  This limitation has been lifted thanks to this contribution.

To make it simple, the solution is to remove all constraints from the original database and transform them into a set of SQL check triggers installed on the working copy databases (SQLite or PostgreSQL). As verifications are made on the client side, it’s impossible to propagate invalid modifications on your base server when you “commit” updates.

Behind the curtains

When you choose to historize an existing database, a few fields are added to the existing table. Among these fields, versioning_ididentifies  one specific version of a row. For one existing row, there are several versions of this row, each with a different versioning_id but with the same original primary key field. As a consequence, that field cannot satisfy the unique constraint, so it cannot be a key, therefore no foreign key neither.

We therefore have to drop the primary key and foreign key constraints when historizing the table. Before removing them, constraints definitions are stored in a dedicated table so that these constraints can be checked later.

When the user checks out a specific table on a specific branch, QGIS-versioning uses that constraint table to build constraint checking triggers in the working copy. The way constraints are built depends on the checkout type (you can checkout in a SQLite file, in the master PostgreSQL database or in another PostgreSQL database).

What do we check ?

That’s where the fun begins ! The first thing we have to check is key uniqueness or foreign key referencing an existing key on insert or update. Remember that there are no primary key and foreign key anymore, we dropped them when activating historization. We keep the term for better understanding.

You also have to deal with deleting or updating a referenced row and the different ways of propagating the modification : cascade, set default, set null, or simply failure, as explained in PostgreSQL Foreign keys documentation .

Nevermind all that, this problem has been solved for you and everything is done automatically in QGIS-versioning. Before you ask, yes foreign keys spanning on multiple fields are also supported.

What’s new in QGIS ?

You will get a new message you probably already know about, when you try to make an invalid modification committing your changes to the master database

Error when foreign key constraint is violated

Partial checkout

One existing Qgis-versioning feature is partial checkout. It allows a user to select a subset of data to checkout in its working copy. It avoids downloading gigabytes of data you do not care about. You can, for instance, checkout features within a given spatial extent.

So far, so good. But if you have only a part of your data, you cannot ensure that modifying a data field as primary key will keep uniqueness. In this particular case, QGIS-versioning will trigger errors on commit, pointing out the invalid rows you have to modify so the unique constraint remains valid.

Error when committing non unique key after a partial checkout

Tests

There is a lot to check when you intend to replace the existing constraint system with your own constraint system based on triggers. In order to ensure QGIS-Versioning stability and reliability, we put some special effort on building a test set that cover all use cases and possible exceptions.

What’s next

There is now no known limitations on using QGIS-versioning on any of your database. If you think about a missing feature or just want to know more about QGIS and QGIS-versioning, feel free to contact us at [email protected]. And please have a look at our support offering for QGIS.

Many thanks to eHealth Africa who helped us develop these new features. eHealth Africa is a non-governmental organization based in Nigeria. Their mission is to build stronger health systems through the design and implementation of data-driven solutions.

QGIS 3 and performance analysis

Context

Since last year we (the QGIS communtity) have been using QGIS-Server-PerfSuite to run performance tests on a daily basis. This way, we’re able to monitor and avoid regressions according to some test scenarios for several QGIS Server releases (currently 2.18, 3.4, 3.6 and master branches). However, there are still many questions about performance from a general point of view:

  • What is the performance of QGIS Server compared to QGIS Desktop?
  • What are the implications of feature simplification for polygons and lines?
  • Does the symbology have a strong impact on performance and in which proportion?

Of course, it’s a broad and complex topic because of the numerous possibilities offered by the rendering engine of QGIS. In this article we’ll look at typical use cases with geometries coming from a PostgreSQL database.

Methodology

The first way to monitor performance is to measure the rendering time. To do so, the Map canvas refreshis activated in the Settings of QGIS Desktop. In this way we can get the rendering time from within the Rendering tab of log messages in QGIS Desktop, as well as from log messages written by QGIS Server.

The rendering time retrieved with this method allows to get the total amount of time spent in rendering for each layer (see the source code).

But in the case of QGIS Server another interesting measure is the total time spent for a specific request, which may be read from log messages too. There are indeed more operations achieved for a single WMS request than a simple rendering in QGIS Desktop:

The rendering time extracted from QGIS Desktop corresponds to the core rendering time displayed in the sequence diagram above. Moreover, to be perfectly comparable, the rendering engine must be configured in the same way in both cases. In this way, and thanks to PyQGIS API, we can retrieve the necessary information from the Python console in QGIS Desktop, like the extent or the canvas size, in order to configure the GetMap WMS request with the appropriate WIDTH,, HEIGHT , and BBOX parameters.

Another way to examine the performance is to use a profiler in order to inspect stack traces. These traces may be represented as a FlameGraph. In this case, debug symbols are necessary, meaning that the rendering time is not representative anymore. Indeed, QGIS has to be compiled in Debug mode.

Polygons

For these tests we use the same dataset as that for the daily performance tests, which is a layer of polygons with 282,776 features.

Feature simplification deactivated

Let’s first have a look at the rendering time and the FlameGraph when the simplification is deactivated. In QGIS Desktop, the mean rendering time is 2591 ms. Using to the PyQGIS API we are able to get the extent and the size of the map to render the map again but using a GetMap WMS request this time.

In this case, the rendering time is 2469 ms and the total request time is 2540 ms. For the record, the first GetMap request is ignored because in this case, the whole QGIS project is read and cached, meaning that the total request time is much higher. But according to those results, the rendering time for QGIS Desktop and QGIS Server are utterly similar, which makes sense considering that the same rendering engine is used, but it is still very reassuring :).

Now, let’s take a look to the FlameGraph to detect where most of the time is spent.

 

Undoubtedly the FlameGraph’s are similar in both cases, meaning that if we want to improve the performance of QGIS Server we need to improve the performance of the core rendering engine, also used in QGIS Desktop. In our case the main method is QgsMapRendererParallelJob::renderLayerStatic where most of the time is spent in:

Methods Desktop % Server %
QgsExpressionContext::setFeature 6.39 6.82
QgsFeatureIterator::nextFeature 28.77 28.41
QgsFeatureRenderer::renderFeature 29.01 27.05

Basically, it may be simplified like:

Clearly, the rendering takes about 30% of the total amount of time. In this case geometry simplification could potentially help.

Feature simplification activated

Geometry simplification, available for both polygons and lines layers, may be activated and configured through layer’s Properties in the Rendering tab. Several parameters may be set:

  • Simplification may be deactivated
  • Threshold for a more drastic simplification
  • Algorithm
  • Provider simplification
  • Scale

Once the simplification activated, we varied the threshold as well as the algorithm in order to detect performance jumps:

The following conclusions can be drawn:

  • The Visvalingam algorithm should be avoided because it begins to be efficient with a high threshold, meaning a significant lack of precision in geometries
  • The ideal threshold for Snap To Grid and Distance algorithms seems to be 1.05. Indeed, considering that it’s a very low threshold, the precision of geometries is still pretty good for a major improvement in rendering time though

For now, these tests have been run on the full extent of the layer. However, we still have a Maximum scale parameter to test, so we’ve decreased the scale of the layer:

And in this case, results are pretty interesting too:

Several conclusions can be drawn:

  • Visvalingam algorithm should be avoided at low scale too
  • Snap To Grid seems counter-productive at low scale
  • Distance algorithm seems to be a good option

Lines

For these tests we also use the same dataset as that for daily performance tests, which is a layer of lines with 125,782 features.

Feature simplification activated

In the same way as for polygons we have tested the effect of the geometric simplification on the rendering time, as well as algorithms and thresholds:

In this case we have exactly the same conclusion as for polygons: the Distance algorithm should be preferred with a threshold of 1.05.

For QGIS Server the mean rendering time is about 1180 ms with geometry simplification compared to 1108 ms for QGIS Desktop, which is totally consistent. And looking at the FlameGraph we note that once again most of the time is spent in accessing the PostgreSQL database (about 30%) and rendering features (about 40%).

 

 

 

 

 

Symbology

Another parameter which has an obvious impact on performance is the symbology used to draw the layers. Some features are known to be time consuming, but we’ve felt that a a thorough study was necessary to verify it.

 

Firstly, we’ve studied the influence of the width as well as the Single Symbol type on the rendering time.

Some points are noteworthy:

Simple Line is clearly the less time consuming

– Beyond the default 0.26 line width, rendering time begins to raise consequently with a clear jump in performance

 

Another interesting feature is the Draw effects option, allowing to add some fancy effects (shadow, glow, …).

However, this feature is known to be particularly CPU consuming. Actually, rendering all the 125,782 lines took so long that we had to to change to a lower scale, with just some a few dozen lines. Results are unequivocal:

 

The last thing we wanted to test for symbology is the effect of the Categorized classification. Here are the results for some classifications with geometry simplification activated:

  • No classification: 1108 ms
  • A simple classification using the column “classification” (8 symbols): 1148 ms
  • A classification based on a stupid expression “classification x 3″ (8 symbols): 1261 ms
  • A classification based on string comparison “toponyme like ‘Ruisseau*'” (2 symbols): 1380 ms
  • A classification with a specific width line for each category (8 symbols): 1850 ms

Considering that a simple classification does not add an excessive extra-cost, it seems that the classification process itself is not very time consuming. However, as soon as an expression is used, we can observe a slight jump in performance.

Labeling

Another important part to study regarding performance is labeling and the underlying positioning. For this test we decreased the scale and varied the Placement parameter without tuning anything.

Clearly, the parallel labeling is much more time consuming than the other placements. However, as previously stated, we used the default parameters for each positioning, meaning that the number of labels really drawn on the map differs from a placement to another.

Points

The last kind of geometries we have to study is points. Similarly to polygons and lines, we used the same dataset as that of performance tests, that is a layer with 435588 points.

In the case of points geometries geometry simplification is of course not available. So we are going to focus on symbology and the impact of marker size.

Obviously Font Marker must be used carefully because of the underlying jump in performance, as well as SVG Symbols. Moreover, contrary to Simple Marker, an increase of the size implies a drastic augmentation in time rendering.

General conclusion

Based on this factual study, several conclusions can be drawn.

Globally, FlameGraph for QGIS Desktop and QGIS Server are completely similar as well as rendering time.

It means that if we want to improve the performance of QGIS Server, we have to work on the desktop configuration and the rendering engine of the QGIS core library.

Extracting generic conclusions from our tests is very difficult, because it clearly depends on the underlying data. But let’s try to suggest some recommendations :).

Firstly, geometry simplification seems pretty efficient with lines and polygons as soon as the algorithm is chosen cautiously, and as long as your features include many vertices. It seems that the Distance algorithm with a 1.05 threshold is a good choice, with both high and low scale. However, it’s not a magic solution!

Secondly, a special care is needed with regards to symbology. Indeed, in some cases, a clear jump in performance is notable. For example, fancy effects and Font Marker SVG Symbol have to be used with caution if you’re picky on rendering time.

Thirdly, we have to be aware of the extra cost caused by labeling, especially the Parallel  placement for line geometries. On this subject, a not very well-known parameter allows to drastically reduce labeling time: the PAL candidates option. Actually, we may decrease the labeling time by reducing the number of candidates. For an explicit use case, you can take a look at the daily reports.

In any case, improving server performance in a substantial way means improving the QGIS core library directly.

Especially, we noticed thanks to FlameGraph that most of the time is spent in drawing features and managing the data from the PostgreSQL database. By the way, a legitimate question is: “How much time do we spend on waiting for the database?”. To be continued 😉

If you hit performance issues on your specific configuration or want to improve QGIS awesomeness, we provide a unique QGIS support offer at http://qgis.oslandia.com/ thanks to our team of specialists!

QField 1.0 is here

Let’s get straight to the point

It’s official, QField for QGIS 1.0 is out!

Get it while it’s hot on the Playstore (qfield.org/get) or on GitHub

We are incredibly pleased and proud of just having released such a jewel and are convinced that, thanks to all its features and conscious design choices, QField will make your field digitizing work much more efficient and pleasant.

Packed with loads of useful features like online and offline features digitizing, geometry and attributes editing, attribute search, powerful forms, theme switching, GPS support, camera integration and much more, QField is the powerful tool for those who need to edit on the go and would like to avoid standing in the swamp with a laptop or paper charts.

Let’s see what makes QField probably* the best mobile GIS in the world.

Work efficiently

QField focuses on efficiently getting GIS field work done and combines a minimal design with sophisticated technology to get data from the field to the office in a comfortable and easy way.

Fast and reactive

Thanks to the underlying QGIS engine and a lot of optimizations, QField is powerful and snappy. Even with complex projects, QField is a joy to work with.

Easy handling

Conscious design choices and a continuous focus on a minimal user interface drive QField’s development. This allows us to deliver a product wich is uncluttered and extremly user-friendly

Quickly digitise

Allowing a seamless digitizing experience is a paramount goal of QField. Thanks to a cleverly designed adaptive user interface and specific features like real-time attribute checks and snapping support, QField allows its users to be extremely time efficient.

Unmatched feature set

To be the best, you need to be clever but also skillful.

QField’s efficiency is matched only by its featureset that allows its users to make the most out of their fieldwork time.

Powerful cartography combined with full text search

The beauty of GIS is that maps are dynamic. Layers can individually be shown and hidden and information can be presented more or less prominently based on the task at hand. QField supports the endless styling possibilities offered by QGIS and thanks to a well placed theme switcher you can change the looks of the entire project with a single click. For even more customizability, QField allows hiding and showing layers by simply long-pressing on the layer name.

Furthermore, QField boasts a fully configurable attribute text search that will allow you to geolocate and edit that exact object you were looking for.

Geometry editing

Editing Geometries on the field is probably the most complex task an operator has to deal with. QField simplifies this process through an adaptive toolbar that appears only when necessary, snapping support and a crosshair digitizer.

Thanks to these enhancements, QField allows reducing the error rate significantly.

Support for high precision GNSS

Simple internal GPS accuracy might be enough for basic projects but cadastral surveying and other high accuracy digitizations have much higher requirements. QFields natively listens to the Android location services so it can take advantage of the best location provided by external devices.

Generate PDF

Thanks to QField’s native support for generating PDFs based on QGIS’s print layouts, your on the fly daily report map is just one click away.

Intuitive project chooser

When dealing with multiple projects, quickly being able to switch between them is key. QField comes with a beautiful file selector with favorite directories (long press on a folder to add it to the favorites and long press on the favorites list to remove it) and an automatic list of the last three opened projects that will save you heaps of time while looking for your projects.

Your data – Your decisions

QField does not impose any constraint on the data model, it is your data and you decide what they should look like and what values are acceptable. QField can enforce constraints for you and you can choose among various type of widgets to represent your data. QGIS will preconfigure some field types automatically, all you’ll have then to do is tweak the settings if you want and your project is ready for mobile prime time. Our documentation has all the information you need.

Extends your Geo Data Infrastructure seamlessly

QField uses QGIS to set up maps and forms so it automatically supports a wide variety of data formats. Thanks to this, you can comfortably prepare your project once and then deploy it everywhere. And since QGIS also has a server component, your project can be served on a WebGIS with the very same beautiful looks.

In fact you can see this exact infrastructure up and running under demo.qfield.org and with the “online_survey.qgs” project included in the QField demo projects.

Synchronize with WiFi, Cable or Network

You can synchronize your project and data (in case you are not using a centralized online database) using various methods thanks to our QFieldSync plugin.

Future cloud integration

In the near future we will add a cloud synchronization functionality, so that you will be able to seamlessly manage your project online and have them automatically deployed to your devices.

Installing and contributing

You can easily install QField using the Playstore (qfield.org/get), find out more on the documentation site (qfield.org), watch some demo videos on our channel (qfield.org/demo) and report problems to our issues tracking system (qfield.org/issues). Please note that the Playstore update can take some hours to roll out and if you had installed a version directly from GitHub, you might have to uninstall it to get the latest Playstore update.

QField, like QGIS, is an open source project. Everyone is welcome to contribute to making the product even better – whether it is with financial support, translation, documentation work, enthusiastic programming or visionary ideas.

We would like to thank our fantastic community for all the great translations, documentations, bug reports and general feedback they gave us. Thanks to all this, we were able to fix plenty of bugs, address performance issues and even add some super cool new features.

Development and deployment services

As masterminds behind QField and core contributor to QGIS, we are the perfect partner for your project. If you want to help us build a better QField or QGIS, or if you need any services related to the whole QGIS stack, don’t hesitate to contact us.

OPENGIS.ch

OPENGIS.ch helps you setting up your spatial data infrastructure based on seamlessly integrated desktop, web, and mobile components.
We support your team in planning, developing, deploying and running your infrastructure. Thanks to several senior geodata infrastructure experts, QGIS core developers and the makers of the mobile data acquisition solution QField, OPENGIS.ch has all it takes to make your project a success. OPENGIS.ch is known for its commitment to high-quality products and its continuous efforts to improve the open source ecosystem.

* We might be biased, but we do believe it

QField RC5 – Last call for testing

We are really happy to announce the fifth and (hopefully) last 1.0 release candidate in QField’s history! This means that QField 1.0 is closer than ever.

Get it while it’s hot on the Playstore (https://qfield.org/get) or on GitHub

Thanks to all the feedback by the fantastic community we were able to fix plenty of bugs, address performance issues and even add some super cool new features.

New file selector

Among the new features, the most important is the flashy new file selector with favorite directories (long press on a folder to add it to the favorites and longpress on the favorites list to remove it) and an automatic list of the last three opened projects that will save you heaps of time while looking for your projects.

Another lifesaver is the newly added support for pasting text from the clipboard in the search bar. Finally, we added a smart and unobtrusive “rate this app” dialog to make it easier for you to give QField the ★★★★★ you always wanted to give it 🙂

Search functionality

List of improvements since RC3

  • New Custom file selector (#476)
  • Favorite directories in file selector (#507)
  • Recent projects in file selector (#499)
  • Ripple effect in file selector (#505)
  • Smart unobtrusive “rate this app” dialog (#510)
  • clear value in date/time if invalid when losing focus (#464)
  • fix crash when switching layer (#498)
  • Respect DPI in multiline fontsize
  • Value Map compatibility with QGIS 2 and lazy loading for performance improvements
  • Use external valuemap model
  • allow to copy text from clipboard in search bar
  • respect keep scale option in locator
  • optimize scale when searching points (#472)
  • add frame to search results
  • Update to Qt 5.12.1 (for android 6+)

You can easily install QField using the Playstore (https://qfield.org/get), find out more on the documentation site (https://qfield.org), watch some demo videos on our channel (https://qfield.org/demo) and report problems to our issues tracking system (https://qfield.org/issues). Please note that the Playstore update can take some hours to roll out and if you had installed a version directly from GitHub, you might have to uninstall it to get the latest playstore update.

QField, like QGIS, is an open source project. Everyone is welcome to contribute making the product even better – whether it is with financial support, enthusiastic programming, translation and documentation work or visionary ideas.

If you want to help us build a better QField or QGIS, or need any services related to the whole QGIS stack don’t hesitate to contact us.

Who is behind QGIS at Oslandia ?

You are using QGIS and look for support services to improve your experience and solve problems ? Oslandia is here to help you with our full QGIS editor service range ! Discover our team members below.

You will probably interact first with our pre-sales engineer Bertrand Parpoil. He leads Geographical Information System projects for 15 years for large corporations, public administrations or hi-tech SME. Bertrand will listen to your needs and explore your use cases, to offer you the best set of services.

Régis Haubourg also takes part in the first steps of projects to analyze your usages and improve them. GIS Expert, he knows QGIS by heart and will make the most of its capabilities. As QGIS Community Manager at Oslandia, he is very active in the QGIS community of developers and contributors. He is president of the Francophone OSGeo local chapter ( OSGeo-fr ), QGIS voting member, organizes the French QGIS day conference in Montpellier, and participates to QGIS community meetings. Before joining Oslandia, he led the migration to QGIS and PostGIS at the Adour-Garonne Water Agency, and now guides our clients with their GIS migrations to OpenSource solutions. Régis is also a great asset when working on water, hydrology and other specific thematic subjects.

Loïc Bartoletti develops QGIS, specializing in features corresponding to his fields of interests : network management, topography, urbanism, architecture… We find him contributing to advanced vector editing in QGIS, writing Python plugins, namely for DICT management. Pushing CAD and migrations from CAD tools to GIS and QGIS is one of his major goals. He will develop your custom applications, combining technical expertise and functional competences. When bored, Loïc packages software on FreeBSD.

Vincent Mora is senior developer in Python and C++, as well as PostGIS expert. He has a strong experience in numerical simulation. He likes coupling GIS (PostGIS, QGIS) with 3D numerical computing for risk management or production optimization. Vincent is an official QGIS committer and can directly integrate your needs into the core of the software. He is also GDAL committer and optimizes low-level layers of your applications. Among numerous activities, Vincent serves as lead developer of the development team for Hydra Software, a tool dedicated to unified hydraulics and hydrology modelling and simulation based on QGIS.

Hugo Mercier is an officiel QGIS committer too for several years. He regularly talks in international conferences on PostGIS, QGIS and other OpenSource GIS softwares. He will implement your needs with new QGIS features, develop innovative plugins ( like QGeoloGIS ) and design and build your new custom applications, solving all kind of technological challenges.

Paul Blottière completes our QGIS committers : very active on core development, Paul has refactored the QGIS server component to bring it to an industry-grade quality level. He also designed and implemented the infrastructure allowing to guarantee QGIS server performances. He dedicated himself to QGIS server OGC certification, especially for WMS (1.3). Thanks to this work QGIS is now a reference OGC implementation.

Julien Cabièces recently joined Oslandia, and quickly dived into QGIS : he contributes to the core of this Desktop GIS, on the server component, as well as applications linked to numerical simulation. Coming from a satellite imagery company with industrial applications, he uses his flexibility to answer all your needs. He brings quality and professionalism to your projects, minimizing risks for large production deployments.

You may also meet Vincent Picavet. Oslandia’s founder is a QGIS.org voting member, and is involved in the project’s evolution and the organization of the community.

Aside from these core contributors, all other Oslandia members also master QGIS integrate this tool into their day-to-day projects.

Bertrand, Régis, Loïc, Vincent (x2), Hugo, Paul et Julien are in tune with you and will be happy to work together for your migrations, application development, and all your desires to contribute to the QGIS ecosystem. Do not hesitate to contact us !

Funding for selective masking in QGIS is now complete!

Few months ago, Oslandia launched QGIS lab’s , a place to advertise our new ideas for QGIS, but also a place to help you find co funders to make dreams become reality.

The first initiative is about label selective masking, a feature that will allow us to achieve even more professional rendering for our maps.

Selective masking

 

Thanks to the commitment of the Swiss QGIS user group and local authorities, this work is now funded !

We now can start working hard to deliver you this great feature for QGIS 3.10

Thanks again to our funders

A last word, this is not a classical crowd funding initiative, but a classical contract for each funder.

No more reason not to contribute to free and open source software!

QField 1.0 is here

Let’s get straight to the point

It’s official, QField for QGIS 1.0 is out!

Get it while it’s hot on the Playstore (qfield.org/get) or on GitHub

We are incredibly pleased and proud of just having released such a jewel and are convinced that, thanks to all its features and conscious design choices, QField will make your field digitizing work much more efficient and pleasant.

Packed with loads of useful features like online and offline features digitizing, geometry and attributes editing, attribute search, powerful forms, theme switching, GPS support, camera integration and much more, QField is the powerful tool for those who need to edit on the go and would like to avoid standing in the swamp with a laptop or paper charts.

Let’s see what makes QField probably* the best mobile GIS in the world.

Work efficiently

QField focuses on efficiently getting GIS field work done and combines a minimal design with sophisticated technology to get data from the field to the office in a comfortable and easy way.

Fast and reactive

Thanks to the underlying QGIS engine and a lot of optimizations, QField is powerful and snappy. Even with complex projects, QField is a joy to work with.

Easy handling

Conscious design choices and a continuous focus on a minimal user interface drive QField’s development. This allows us to deliver a product wich is uncluttered and extremly user-friendly

Quickly digitise

Allowing a seamless digitizing experience is a paramount goal of QField. Thanks to a cleverly designed adaptive user interface and specific features like real-time attribute checks and snapping support, QField allows its users to be extremely time efficient.

Unmatched feature set

To be the best, you need to be clever but also skillful.

QField’s efficiency is matched only by its featureset that allows its users to make the most out of their fieldwork time.

Powerful cartography combined with full text search

The beauty of GIS is that maps are dynamic. Layers can individually be shown and hidden and information can be presented more or less prominently based on the task at hand. QField supports the endless styling possibilities offered by QGIS and thanks to a well placed theme switcher you can change the looks of the entire project with a single click. For even more customizability, QField allows hiding and showing layers by simply long-pressing on the layer name.

Furthermore, QField boasts a fully configurable attribute text search that will allow you to geolocate and edit that exact object you were looking for.

Geometry editing

Editing Geometries on the field is probably the most complex task an operator has to deal with. QField simplifies this process through an adaptive toolbar that appears only when necessary, snapping support and a crosshair digitizer.

Thanks to these enhancements, QField allows reducing the error rate significantly.

Support for high precision GNSS

Simple internal GPS accuracy might be enough for basic projects but cadastral surveying and other high accuracy digitizations have much higher requirements. QFields natively listens to the Android location services so it can take advantage of the best location provided by external devices.

Generate PDF

Thanks to QField’s native support for generating PDFs based on QGIS’s print layouts, your on the fly daily report map is just one click away.

Intuitive project chooser

When dealing with multiple projects, quickly being able to switch between them is key. QField comes with a beautiful file selector with favorite directories (long press on a folder to add it to the favorites and long press on the favorites list to remove it) and an automatic list of the last three opened projects that will save you heaps of time while looking for your projects.

Your data – Your decisions

QField does not impose any constraint on the data model, it is your data and you decide what they should look like and what values are acceptable. QField can enforce constraints for you and you can choose among various type of widgets to represent your data. QGIS will preconfigure some field types automatically, all you’ll have then to do is tweak the settings if you want and your project is ready for mobile prime time. Our documentation has all the information you need.

Extends your Geo Data Infrastructure seamlessly

QField uses QGIS to set up maps and forms so it automatically supports a wide variety of data formats. Thanks to this, you can comfortably prepare your project once and then deploy it everywhere. And since QGIS also has a server component, your project can be served on a WebGIS with the very same beautiful looks.

In fact you can see this exact infrastructure up and running under demo.qfield.org and with the “online_survey.qgs” project included in the QField demo projects.

Synchronize with WiFi, Cable or Network

You can synchronize your project and data (in case you are not using a centralized online database) using various methods thanks to our QFieldSync plugin.

Future cloud integration

In the near future we will add a cloud synchronization functionality, so that you will be able to seamlessly manage your project online and have them automatically deployed to your devices.

Installing and contributing

You can easily install QField using the Playstore (qfield.org/get), find out more on the documentation site (qfield.org), watch some demo videos on our channel (qfield.org/demo) and report problems to our issues tracking system (qfield.org/issues). Please note that the Playstore update can take some hours to roll out and if you had installed a version directly from GitHub, you might have to uninstall it to get the latest Playstore update.

QField, like QGIS, is an open source project. Everyone is welcome to contribute to making the product even better – whether it is with financial support, translation, documentation work, enthusiastic programming or visionary ideas.

We would like to thank our fantastic community for all the great translations, documentations, bug reports and general feedback they gave us. Thanks to all this, we were able to fix plenty of bugs, address performance issues and even add some super cool new features.

Development and deployment services

As masterminds behind QField and core contributor to QGIS, we are the perfect partner for your project. If you want to help us build a better QField or QGIS, or if you need any services related to the whole QGIS stack, don’t hesitate to contact us.

OPENGIS.ch

OPENGIS.ch helps you setting up your spatial data infrastructure based on seamlessly integrated desktop, web, and mobile components.
We support your team in planning, developing, deploying and running your infrastructure. Thanks to several senior geodata infrastructure experts, QGIS core developers and the makers of the mobile data acquisition solution QField, OPENGIS.ch has all it takes to make your project a success. OPENGIS.ch is known for its commitment to high-quality products and its continuous efforts to improve the open source ecosystem.

* We might be biased, but we do believe it

QField RC5 – Last call for testing

We are really happy to announce the fifth and (hopefully) last 1.0 release candidate in QField’s history! This means that QField 1.0 is closer than ever.

Get it while it’s hot on the Playstore (https://qfield.org/get) or on GitHub

Thanks to all the feedback by the fantastic community we were able to fix plenty of bugs, address performance issues and even add some super cool new features.

New file selector

Among the new features, the most important is the flashy new file selector with favorite directories (long press on a folder to add it to the favorites and longpress on the favorites list to remove it) and an automatic list of the last three opened projects that will save you heaps of time while looking for your projects.

Another lifesaver is the newly added support for pasting text from the clipboard in the search bar. Finally, we added a smart and unobtrusive “rate this app” dialog to make it easier for you to give QField the ★★★★★ you always wanted to give it 🙂

Search functionality

List of improvements since RC3

  • New Custom file selector (#476)
  • Favorite directories in file selector (#507)
  • Recent projects in file selector (#499)
  • Ripple effect in file selector (#505)
  • Smart unobtrusive “rate this app” dialog (#510)
  • clear value in date/time if invalid when losing focus (#464)
  • fix crash when switching layer (#498)
  • Respect DPI in multiline fontsize
  • Value Map compatibility with QGIS 2 and lazy loading for performance improvements
  • Use external valuemap model
  • allow to copy text from clipboard in search bar
  • respect keep scale option in locator
  • optimize scale when searching points (#472)
  • add frame to search results
  • Update to Qt 5.12.1 (for android 6+)

You can easily install QField using the Playstore (https://qfield.org/get), find out more on the documentation site (https://qfield.org), watch some demo videos on our channel (https://qfield.org/demo) and report problems to our issues tracking system (https://qfield.org/issues). Please note that the Playstore update can take some hours to roll out and if you had installed a version directly from GitHub, you might have to uninstall it to get the latest playstore update.

QField, like QGIS, is an open source project. Everyone is welcome to contribute making the product even better – whether it is with financial support, enthusiastic programming, translation and documentation work or visionary ideas.

If you want to help us build a better QField or QGIS, or need any services related to the whole QGIS stack don’t hesitate to contact us.

Stand-alone PyQGIS scripts with OSGeo4W

PyQGIS scripts are great to automate spatial processing workflows. It’s easy to run these scripts inside QGIS but it can be even more convenient to run PyQGIS scripts without even having to launch QGIS. To create a so-called “stand-alone” PyQGIS script, there are a few things that need to be taken care of. The following steps show how to set up PyCharm for stand-alone PyQGIS development on Windows10 with OSGeo4W.

An essential first step is to ensure that all environment variables are set correctly. The most reliable approach is to go to C:\OSGeo4W64\bin (or wherever OSGeo4W is installed on your machine), make a copy of qgis-dev-g7.bat (or any other QGIS version that you have installed) and rename it to pycharm.bat:

Instead of launching QGIS, we want that pycharm.bat launches PyCharm. Therefore, we edit the final line in the .bat file to start pycharm64.exe:

In PyCharm itself, the main task to finish our setup is configuring the project interpreter:

First, we add a new “system interpreter” for Python 3.7 using the corresponding OSGeo4W Python installation.

To finish the interpreter config, we need to add two additional paths pointing to QGIS\python and QGIS\python\plugins:

That’s it! Now we can start developing our stand-alone PyQGIS script.

The following example shows the necessary steps, particularly:

  1. Initializing QGIS
  2. Initializing Processing
  3. Running a Processing algorithm
import sys

from qgis.core import QgsApplication, QgsProcessingFeedback
from qgis.analysis import QgsNativeAlgorithms

QgsApplication.setPrefixPath(r'C:\OSGeo4W64\apps\qgis-dev', True)
qgs = QgsApplication([], False)
qgs.initQgis()

# Add the path to processing so we can import it next
sys.path.append(r'C:\OSGeo4W64\apps\qgis-dev\python\plugins')
# Imports usually should be at the top of a script but this unconventional 
# order is necessary here because QGIS has to be initialized first
import processing
from processing.core.Processing import Processing

Processing.initialize()
QgsApplication.processingRegistry().addProvider(QgsNativeAlgorithms())
feedback = QgsProcessingFeedback()

rivers = r'D:\Documents\Geodata\NaturalEarthData\Natural_Earth_quick_start\10m_physical\ne_10m_rivers_lake_centerlines.shp'
output = r'D:\Documents\Geodata\temp\danube3.shp'
expression = "name LIKE '%Danube%'"

danube = processing.run(
    'native:extractbyexpression',
    {'INPUT': rivers, 'EXPRESSION': expression, 'OUTPUT': output},
    feedback=feedback
    )['OUTPUT']

print(danube)

Call for testing: GRASS GIS with Python 3

Please help us testing the Python3 support in the yet unreleased GRASS GIS trunk (i.e., version “grass77” which will be released as “grass78” in the near future).

1. Why Python 3?

Python 2 is end-of-life (EOL); the current Python 2.7 will retire in 11 months from today (see https://pythonclock.org). We want to follow the “Moving to require Python 3” and complete the change to Python 3. And we need a broader community testing.

2. Download and test!

Packages are available at time:

3. Instructions for testing

4. Problems found? Please report them to us

Problems and bugs can be reported in the GRASS GIS trac. Code changes are welcome!

Thanks for testing grass77!

The post Call for testing: GRASS GIS with Python 3 appeared first on GFOSS Blog | GRASS GIS and OSGeo News.

Dealing with delayed measurements in (Geo)Pandas

Yesterday, I learned about a cool use case in data-driven agriculture that requires dealing with delayed measurements. As Bert mentions, for example, potatoes end up in the machines and are counted a few seconds after they’re actually taken out of the ground:

Therefore, in order to accurately map yield, we need to take this temporal offset into account.

We need to make sure that time and location stay untouched, but need to shift the potato count value. To support this use case, I’ve implemented apply_offset_seconds() for trajectories in movingpandas:

    def apply_offset_seconds(self, column, offset):
        self.df[column] = self.df[column].shift(offset, freq='1s')

The following test illustrates its use: you can see how the value column is shifted by 120 second. Geometry and time remain unchanged but the value column is shifted accordingly. In this test, we look at the row with index 2 which we access using iloc[2]:

    def test_offset_seconds(self):
        df = pd.DataFrame([
            {'geometry': Point(0, 0), 't': datetime(2018, 1, 1, 12, 0, 0), 'value': 1},
            {'geometry': Point(-6, 10), 't': datetime(2018, 1, 1, 12, 1, 0), 'value': 2},
            {'geometry': Point(6, 6), 't': datetime(2018, 1, 1, 12, 2, 0), 'value': 3},
            {'geometry': Point(6, 12), 't': datetime(2018, 1, 1, 12, 3, 0), 'value':4},
            {'geometry': Point(6, 18), 't': datetime(2018, 1, 1, 12, 4, 0), 'value':5}
        ]).set_index('t')
        geo_df = GeoDataFrame(df, crs={'init': '31256'})
        traj = Trajectory(1, geo_df)
        traj.apply_offset_seconds('value', -120)
        self.assertEqual(traj.df.iloc[2].value, 5)
        self.assertEqual(traj.df.iloc[2].geometry, Point(6, 6))

From CSV to GeoDataFrame in two lines

Pandas is great for data munging and with the help of GeoPandas, these capabilities expand into the spatial realm.

With just two lines, it’s quick and easy to transform a plain headerless CSV file into a GeoDataFrame. (If your CSV is nice and already contains a header, you can skip the header=None and names=FILE_HEADER parameters.)

usecols=USE_COLS is also optional and allows us to specify that we only want to use a subset of the columns available in the CSV.

After the obligatory imports and setting of variables, all we need to do is read the CSV into a regular DataFrame and then construct a GeoDataFrame.

import pandas as pd
from geopandas import GeoDataFrame
from shapely.geometry import Point

FILE_NAME = "/temp/your.csv"
FILE_HEADER = ['a', 'b', 'c', 'd', 'e', 'x', 'y']
USE_COLS = ['a', 'x', 'y']

df = pd.read_csv(
    FILE_NAME, delimiter=";", header=None,
    names=FILE_HEADER, usecols=USE_COLS)
gdf = GeoDataFrame(
    df.drop(['x', 'y'], axis=1),
    crs={'init': 'epsg:4326'},
    geometry=[Point(xy) for xy in zip(df.x, df.y)])

It’s also possible to create the point objects using a lambda function as shown by weiji14 on GIS.SE.

Visualization of borehole logs with QGIS

At Oslandia, we have been working on a component based on the QGIS API for the visualization of well and borehole logs.

This component is aiming at displaying data collected vertically along wells dug underground. It mainly focuses on data organized in series of contiguous samples, and is generic enough to be used for both vertical (where the Y axis corresponds to a depth underground) and horizontal data (where the X axis corresponds to time for example). One of the main concerns was to ensure good display performances with an important volume of sample points (usually hundred of thousands sample points).

We have already been working on plot components in the past, but for specific QGIS plugins (both for timeseries and stratigraphic logs) and thought we will put these past experiences to good use by creating a more generic library.

We decided to represent sample points as geometry features in order to be able to reuse the rich symbology engine of QGIS. This allows users to represent their data whatever they like without having to rewrite an entire symbology engine. We also benefit from all the performance optimizations that have been added and polished over the years (on-the-fly geometry simplification for example).

Albeit written in Python, we achieved good display performances. The key trick was to avoid copy of data between the sample points read by QGIS and the Python graphing component. It is achieved thanks to the fact that the PyQGIS API has some functions that respect the buffer protocol.

You can have a look at the following video to see this component integrated in an existing plugin.

Visualization of borehole logs withing QGIS

It is distributed as usual under an open source license and the code repository can be found on GitHub.

Do not hesitate to contact us ( [email protected] ) if you are interested in any enhancements around this component.

PyQGIS101 part 10 published!

PyQGIS 101: Introduction to QGIS Python programming for non-programmers has now reached the part 10 milestone!

Beyond the obligatory Hello world! example, the contents so far include:

If you’ve been thinking about learning Python programming, but never got around to actually start doing it, give PyQGIS101 a try.

I’d like to thank everyone who has already provided feedback to the exercises. Every comment is important to help me understand the pain points of learning Python for QGIS.

I recently read an article – unfortunately I forgot to bookmark it and cannot locate it anymore – that described the problems with learning to program very well: in the beginning, it’s rather slow going, you don’t know the right terminology and therefore don’t know what to google for when you run into issues. But there comes this point, when you finally get it, when the terminology becomes clearer, when you start thinking “that might work” and it actually does! I hope that PyQGIS101 will be a help along the way.

Visualize Postgres JSON data in QML widgets

As promised some time ago in “The new QML widgets in QGIS – When widgets get unbridled” we still owe you some fancy unicorns, but first let’s have a look at another nice feature that has been introduced in QGIS 3.4 LTR,  the reading of PostgreSQL JSON and JSONB types.
With JSON you have a lot of possibilities for storing unstructured data. In our case, it’s mainly interesting when the data are stored as an array or a JSON object. Let’s have a look at two examples.

Visualize Postgres JSON data with common widgets

With the usual QGIS widgets “List” and “Key/Value” you are able to display JSON arrays and simple JSON objects.

JSON array as List

[
    "European dark bee",
    "Carniolan honey bee",
    "Buckfast bee"
]

Simple JSON object as Key/Value

{
    "nomenclatura":"Apis mellifera mellifera",
    "name":"European dark bee",
    "link":"https://en.wikipedia.org/wiki/European_dark_bee"
}

Or of course both as plain text in the “Text Edit” widget:

Say hi to Postgres JSON in QML widget

Probably, your JSON data does not look really nice with the aforementioned widgets, luckily since QGIS 3.4, you are free to create your own QML widget. Since QGIS already loads the JSON data into structures that are supported by QML, we can use all the JSON data within the QML code.
Let’s assume you have the JSON array from above and you like the elegance of the blue of Jacques Majorelle. You create your personal list widget by adding the JSON field as an expression:

import QtQuick 2.0
Rectangle {
    width: 310; height: 250; color: "grey"
    Column {
        anchors.horizontalCenter: parent.horizontalCenter
        anchors.verticalCenter: parent.verticalCenter
        spacing: 5
        Repeater {
            model:expression.evaluate("\"jvalue\"")
            Rectangle {
                color: "#6050dc"
                width: 300; height: 50; radius: 10.0
                Text {
                    anchors.centerIn: parent
                    font.pointSize: 24
                    text: modelData
                }
            }
        }
    }
}

You will have your very personal list:

JSON also allows storing more complex data, like for example a list of objects. In that case, you will reach the limits of the common QGIS widgets.
Let’s assume you have a table looking like this:

nomenclatura name link
Apis mellifera mellifera European dark bee https://en.wikipedia.org/wiki/European_dark_bee
Apis mellifera carnica Carniolan honey bee https://en.wikipedia.org/wiki/Carniolan_honey_bee
Apis mellifera Buckfast bee https://en.wikipedia.org/wiki/Buckfast_bee

In JSON it would be stored like this:

[
    {"nomenclatura":"Apis mellifera mellifera","name":"European dark bee","link":"https://en.wikipedia.org/wiki/European_dark_bee"},
    {"nomenclatura":"Apis mellifera carnica","name":"Carniolan honey bee","link":"https://en.wikipedia.org/wiki/Carniolan_honey_bee"},
    {"nomenclatura":"Apis mellifera","name":"Buckfast bee","link":"https://en.wikipedia.org/wiki/Buckfast_bee"}
]

With the QML Widget you can use the QML TableView to visualize:

import QtQuick 2.0
import QtQuick.Controls 1.4
TableView {
    width: 600
    model: expression.evaluate("\"jvalue\"")
    TableViewColumn {
        role: "nomenclatura"
        title: "Nomenclature"
        width: 200
    }
    TableViewColumn {
        role: "name"
        title: "Name"
        width: 200
    }
    TableViewColumn {
        role: "link"
        title: "Wikipedia"
        width: 200
    }
}


Or, even more powerful, you can create your super individual table using the model and create each row by using a QML Repeater.
Additionally, you can use a lot of fancy stuff like:

  • mouse interaction
  • animation
  • opening an external link
  • … and so on


The QML code for that looks like this.

import QtQuick 2.0
Rectangle {
    width: 610; height: 500
    Column {
        anchors.horizontalCenter: parent.horizontalCenter
        anchors.verticalCenter: parent.verticalCenter
        Repeater {
            model: expression.evaluate("\"jvalue\"")
            Row {
                id: theRow
                height: mouseArea1.containsMouse || mouseArea2.containsMouse || mouseArea3.containsMouse ? 70 : 50;
                Rectangle { color: "lightblue";
                            border.width: 1
                            width: 150; height: parent.height
                            Text { anchors.centerIn: parent
                                   font.pointSize: 10; text: modelData.nomenclatura }
                            MouseArea {
                                id: mouseArea1
                                anchors.fill: parent
                                hoverEnabled: true
                            }
                }
                Rectangle { color: "lightgreen";
                            border.width: 1
                            width: 150; height: parent.height
                            Text { anchors.centerIn: parent
                                   font.pointSize: 10; text: modelData.name }
                            MouseArea {
                                id: mouseArea2
                                anchors.fill: parent
                                hoverEnabled: true
                            }
                }
                Rectangle {
                            id: linkField
                            color: "lightyellow";
                            border.width: 1
                            width: 300; height: parent.height
                            Text { anchors.centerIn: parent
                                   font.pointSize: 10; text: modelData.link }
                            MouseArea {
                                id: mouseArea3
                                anchors.fill: parent
                                hoverEnabled: true
                                onPressed: linkField.state = "PRESSED"
                                onReleased: linkField.state = "RELEASED"
                                onClicked: Qt.openUrlExternally(modelData.link)
                            }
                            states: [
                                State {
                                    name: "PRESSED"
                                    PropertyChanges { target: linkField; color: "green"}
                                },
                                State {
                                    name: "RELEASED"
                                    PropertyChanges { target: linkField; color: "lightyellow"}
                                }
                            ]
                            transitions: [
                                Transition {
                                    from: "PRESSED"
                                    to: "RELEASED"
                                    ColorAnimation { target: linkField; duration: 1000}
                                },
                                Transition {
                                    from: "RELEASED"
                                    to: "PRESSED"
                                    ColorAnimation { target: linkField; duration: 1000}
                                }
                            ]
                }
            }
        }
    }
}

And that’s it

I hope you liked reading and you will enjoy using it to make beautiful widgets and forms. If you have questions or inputs, feel free to add a comment.
… and in case you still asking where the promised unicorns are. Here’s is a super-fancy implementation 😉

QGIS Server 3 : OGC Certification work for WFS 1.1.0

QGIS Server is an open source OGC data server which uses QGIS engine as backend. It becomes really awesome because a simple desktop qgis project file can be rendered as web services with exactly the same rendering, and without any mapfile or xml coding by hand.

QGIS Server provides a way to serve OGC web services like WMS, WCS, WFS and WMTS resources from a QGIS project, but can also extend services like GetPrint which takes advantage of QGIS’s map composer power to generate high quality PDF outputs.

Since the 3.0.2 version, QGIS Server is certified as an official OGC reference implementation for WMS 1.3.0 and reports are generated in a daily continuous integration to avoid regressions.

 

Thus, the next step was naturally to take a look at the WFS 1.1.0 thanks to the support of the QGIS Grant Program

Side note, this Grant program is made possible thanks to your direct sponsoring and micro-donations to QGIS.org.

TEAM Engine test suite for WFS 1.1.0

We use a tool provided by the OGC Compliance Program to run dedicated tests on the server : Teamengine (Test, Evaluation, And Measurement Engine).

Test suites are available through a web interface. However, for the needs of continuous integration, these tests have to be run without user interaction. In the case of WMS 1.3.0, nothing more easy than using the REST API:

$ curl "http://localhost:8081/teamengine/rest/suites/wms/1.20/run?queryable=queryable&basic=basic&capabilities-url=http://172.17.0.2/qgisserver?REQUEST=GetCapabilities%26SERVICE=WMS%26VERSION=1.3.0%26MAP=/data/teamengine_wms_130.qgs

 

However, the WFS 1.1.0 test suite does not provide a REST API and makes the situation less straightforward. We switched to using TEAM Engine directly from command line:

$ cd te_base
$ ./bin/unix/test.sh -source=wfs/1.1.0/ctl/main.ctl -form=params.xml

The params.xml file allows to configure underlying tests. In this particular case, the GetCapabilities URL of the QGIS Server to test is given.  Results are available thanks to the viewlog.sh shell script:

$ ./bin/unix/viewlog.sh -logdir=te_base/users/root/ -session=s0001
Test wfs:wfs-main type Mandatory (s0001) Failed (InheritedFailure)
   Test wfs:readiness-tests type Mandatory (s0001/d68e38807_1) Failed (InheritedFailure)
      Test ctl:SchematronValidatingParser type Mandatory (s0001/d68e38807_1/d68e588_1) Failed
      Test wfs:basic-main type Mandatory (s0001/d68e38807_1/d68e636_1) Failed (InheritedFailure)
         Test wfs:run-GetCapabilities-basic-cc-GET type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1) Failed (InheritedFailure)
            Test wfs:wfs-1.1.0-Basic-GetCapabilities-tc1 type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1095_1) Passed
               Test ctl:assert-xpath type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1095_1/d68e1234_1) Passed
            Test wfs:wfs-1.1.0-Basic-GetCapabilities-tc2 type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1100_1) Passed
               Test ctl:assert-xpath type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1100_1/d68e1305_1) Passed
            Test wfs:wfs-1.1.0-Basic-GetCapabilities-tc3 type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1105_1) Passed
               Test ctl:assert-xpath type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1105_1/d68e1558_1) Passed
               Test ctl:assert-xpath type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1105_1/d68e1582_1) Passed
               Test ctl:assert-xpath type Mandatory (s0001/d68e38807_1/d68e636_1/d68e28810_1/d68e1105_1/d68e1606_1) Passed
...
...

Finally, a Python script has been written to read these logs and generate HTML report easily readable. Thanks to our QGIS-Server-CertifSuite, providing the continuous integration infrastructure with Docker images, these reports are also generated daily.

Bugfix and Conclusion

First results were clear: a lot of work is necessary to have a QGIS Server certified for WFS 1.1.0!

We started fixing the issues one by one:

And now we have a much better support than 6 months ago

However, some work still need to be done to finally obtain the OGC certification for WFS 1.1.0. To be continued!

Please contact us if you want QGIS server to become a reference implementation for all OGC service !

The new QML widgets in QGIS – When widgets get unbridled

Individuality is the definition of freedom. And freedom is the fundamental requirement of man’s mind. QGIS possibly cannot give you all the freedom you require in life. But at least a lot of freedom in how you manage your work. QGIS 3.4.0 LTR was released last week and it comes loaded with features supporting big freedom in the configuration of your projects.  Let’s focus on the QML Widget. QML is the smart casual look of widgets. With the help of some simple code, you will be able to visualize your data in the attribute form like never before. You can display beautiful charts, complex JSON data, and fancy colored unicorns. 

How it’s done

Let’s start with an example. In the Attribute Form configuration in the Layer Properties you have first to activate the drag and drop designer. Not only can you drag the field- and relation-items from the available widget list to the form layout list, but also a QML Widget. When you drop this item, it creates an “instance” of a QML Widget. This means, you can drag and drop as many QML Widgets as you like to have on your form and configure each of them individually.

QML (Qt Modelling Language) is a user interface specification and programming language. It allows developers and designers alike to create highly performant, fluidly animated and visually appealing applications. QML offers a highly readable, declarative, JSON-like syntax with support for imperative JavaScript expressions combined with dynamic property bindings. Source: Qt documentation

It’s a bit like an HTML page on the attribute form but very well integrated with Qt.
On dropping the item, the configuration dialog pops up. After closing you can come back to it by double-clicking the item in the form layout list, like you do it with containers and tabs. If your don’t know QML that much yet, the default snippets from the drop-down can create an example of a rectangle, a pie chart or a bar chart. This could help you to create your own widget. On the right you can see a preview of your widget in real time. There are powerful layout possibilities to design it according to your ideas. For more information about it see the QML layout part of the Qt documentation.

But a chart makes no sense if there is no data. Of course, you can enter the data directly into your QML code, but most likely you need the data of the features to be visualized. This brings us to expressions. You can use them like you are used to in Default Values, Constraints and Display Messages. You’ll find the well-known expression builder widget in this configuration as well.

Using expressions

So let’s assume we want to visualize who holds what share of a forest. These forests are owned by the country (national), the canton (cantonal) or private. To keep it simple we have three attributes for that: national_share,cantonal_share and private_share.
After creating the default pie chart you will find this snippet in the QML code text area:

PieSeries {
    id: pieSeries
    PieSlice { label: "First slice"; value: 25 }
    PieSlice { label: "Second slice"; value: 45 }
    PieSlice { label: "Third slice"; value: 30 }
}

Let’s set the field expressions into the PieSlice-values. Just select them in the expression widget and add them with the + into the chart.

As you can see the expressions in the code are wrapped inside expression.evaluate("<expression>"). This means there are no limits in using expressions.
You are open to use more complex expressions like e.g. for the title property of the pie chart:

title: expression.evaluate("CASE WHEN @layer_name LIKE \"forest\" THEN \"Forest\" ELSE @layer_name END")

Or in case the task with forest shares would be solved with relations to other layers by filling up a model with the children and the children’s share. This is possible by using expressions with the help of the expression functionrelation_aggregate.
More information about expressions can be found in the QGIS Documentation.
Back to our example. The result will look like this on the attribute form. It visualizes the share values in the pie chart.

The visualization is not (yet) updated in real time when the values change. But this would be a nice thing to have in the future… If you would like to support this, please contact us.

And that’s it

I hope you liked reading and you will enjoy using it to make beautiful widgets and forms. If you have questions or inputs, feel free to add a comment.
… and in case you still asking where the promised unicorns are. Well you have to wait for the part 2 of this article 😉
 

  • Page 1 of 12 ( 224 posts )
  • >>
  • gis

Back to Top

Sponsors