Page 1 of 37 (728 posts)

  • talks about »
  • qgis

Tags

Last update:
Thu Apr 26 02:10:13 2018

A Django site.

QGIS Planet

Marco becomes QGIS.org Co-chair

We are very proud to announce that one of our founders and directors Marco Bernasocchi was elected as QGIS.org project steering committee (PSC) co-chair. With over 10 years of involvement with QGIS (he started working with QGIS 0.6) Marco will

Drill-down (cascading) forms in QGIS crowdfund launched!

We’ve just launched a new crowd funding campaign to implement a drill-down (cascading) field support within QGIS forms. Full details are available on the campaign page.

This is a really exciting new feature which would help add greater flexibility and power to QGIS feature forms! To make it possible we need 3500€ pledged before 11 May 2018. You can help make this a reality by supporting the campaign or by sharing the page and increasing exposure to the campaign. Updates to follow!

Porting QGIS plugins to API v3 – Strategy and tools

The Release of QGIS 3.0 was a great success and with the first LTR (3.4) scheduled for release this fall, it is now the perfect time to port your plugins to the new API. QGIS 3.0 is the first major

Optional parameters in QGIS Processing scripts & models

Remember the good old times when all parameters in Processing were mandatory?

Inputs and outputs are fixed, and optional parameters or outputs are not supported. [Graser & Olaya, 2015]

Since QGIS 2.14, this is no longer the case. Scripts, as well as models, can now have optional parameters. Here is how for QGIS 3:

When defining a Processing script parameter, the parameter’s constructor takes a boolean flag indicating whether the parameter should be optional. It’s false by default:

class qgis.core.QgsProcessingParameterNumber(
   name: str, description: str = '', 
   type: QgsProcessingParameterNumber.Type = QgsProcessingParameterNumber.Integer, 
   defaultValue: Any = None, 
   optional: bool = False,
   minValue: float = -DBL_MAX+1, maxValue: float = DBL_MAX)

(Source: http://python.qgis.org/api/core/Processing/QgsProcessingParameterNumber.html)

One standard tool that uses optional parameters is Add autoincremental field:

From Python, this algorithm can be called with or without the optional parameters:

When building a model, an optional input can be assigned to the optional parameter. To create an optional input, make sure to deactivate the mandatory checkbox at the bottom of the input parameter definition:

Then this optional input can be used in an algorithm. For example, here the numerical input optional_value is passed to the Start values at parameter:

You can get access to all available inputs by clicking the … button next to the Start values at field. In this example, I have access to values of the input layer as well as  the optional value:

Once this is set up, this is how it looks when the model is run:

You can see that the optional value is indeed Not set.

References

Graser, A., & Olaya, V. (2015). Processing: A Python Framework for the Seamless Integration of Geoprocessing Tools in QGIS. ISPRS Int. J. Geo-Inf. 2015, 4, 2219-2245. doi:10.3390/ijgi4042219.

Processing script template for QGIS3

Processing has been overhauled significantly for QGIS 3.0. Besides speed-ups, one of the most obvious changes is the way to write Processing scripts. Instead of the old Processing-specific syntax, Processing scripts for QGIS3 are purely pythonic implementations of QgsProcessingAlgorithm.

Here’s a template that you can use to develop your own algorithms:

from qgis.PyQt.QtCore import QCoreApplication, QVariant
from qgis.core import (QgsField, QgsFeature, QgsFeatureSink, QgsFeatureRequest, QgsProcessing, QgsProcessingAlgorithm, QgsProcessingParameterFeatureSource, QgsProcessingParameterFeatureSink)
                      
class ExAlgo(QgsProcessingAlgorithm):
    INPUT = 'INPUT'
    OUTPUT = 'OUTPUT'

    def __init__(self):
        super().__init__()

    def name(self):
        return "exalgo"
    
    def tr(self, text):
        return QCoreApplication.translate("exalgo", text)
        
    def displayName(self):
        return self.tr("Example script")

    def group(self):
        return self.tr("Examples")

    def groupId(self):
        return "examples"

    def shortHelpString(self):
        return self.tr("Example script without logic")

    def helpUrl(self):
        return "https://qgis.org"
        
    def createInstance(self):
        return type(self)()
  
    def initAlgorithm(self, config=None):
        self.addParameter(QgsProcessingParameterFeatureSource(
            self.INPUT,
            self.tr("Input layer"),
            [QgsProcessing.TypeVectorAnyGeometry]))
        self.addParameter(QgsProcessingParameterFeatureSink(
            self.OUTPUT,
            self.tr("Output layer"),
            QgsProcessing.TypeVectorAnyGeometry))

    def processAlgorithm(self, parameters, context, feedback):
        source = self.parameterAsSource(parameters, self.INPUT, context)
        (sink, dest_id) = self.parameterAsSink(parameters, self.OUTPUT, context,
                                               source.fields(), source.wkbType(), source.sourceCrs())

        features = source.getFeatures(QgsFeatureRequest())
        for feat in features:
            out_feat = QgsFeature()
            out_feat.setGeometry(feat.geometry())
            out_feat.setAttributes(feat.attributes())
            sink.addFeature(out_feat, QgsFeatureSink.FastInsert)

        return {self.OUTPUT: dest_id}

This script just copies the features of the input layer to the output layer without any modifications. Add your logic to the processAlgorithm() function to get started.

Use Create New Script from the Toolbox toolbar:

Paste the example script:

Once saved, the script will show up in the Processing toolbox:

Revisiting point & polygon joins

Joining polygon attributes to points based on their location is a very common GIS task. In QGIS 2, QGIS’ own implementation of “Join attributes by location” was much slower than SAGA’s “Add polygon attributes to points”. Thus, installations without SAGA were out of good options.

Luckily this issue (and many more) has been fixed by the rewrite of many geoprocessing algorithms for QGIS 3! Let’s revisit the comparison:

I’m using publicly available datasets from Naturalearth: The small scale populated places (243 points) and the large scale countries (255 polygons with many nodes). Turns out that QGIS 3’s built-in tool takes a little less than two seconds while the SAGA Processing tool requires a litte less than six seconds:

Like in the previous comparison, times were measured using the Python Console:

In both tools, only the countries’ SOVEREIGNT attribute is joined to the point attribute table:

import processing
t0 = datetime.datetime.now()
print("QGIS Join attributes by location ...")
processing.runAndLoadResults(
   "qgis:joinattributesbylocation", 
   {'INPUT':'E:/Geodata/NaturalEarth/vector_v4/natural_earth_vector/110m_cultural/ne_110m_populated_places.shp',
   'JOIN':'E:/Geodata/NaturalEarth/vector_v4/natural_earth_vector/10m_cultural/ne_10m_admin_0_countries.shp',
   'PREDICATE':[5],'JOIN_FIELDS':['SOVEREIGNT'],
   'METHOD':0,'DISCARD_NONMATCHING':False,'OUTPUT':'memory:'})
t1 = datetime.datetime.now()
print("Runtime: "+str(t1-t0))
print("SAGA Add polygon attributers to points ...")
processing.runAndLoadResults("saga:addpolygonattributestopoints", 
   {'INPUT':'E:/Geodata/NaturalEarth/vector_v4/natural_earth_vector/110m_cultural/ne_110m_populated_places.shp',
   'POLYGONS':'E:/Geodata/NaturalEarth/vector_v4/natural_earth_vector/10m_cultural/ne_10m_admin_0_countries.shp',
   'FIELDS':'SOVEREIGNT','OUTPUT':'C:/Users/anita/AppData/Local/Temp/processing_8b1bbde78de5490285dd530e115cca52/099660d88bf14c54a853cc230e388e55/OUTPUT.shp'})
t2 = datetime.datetime.now()
print("Runtime: "+str(t2-t1))

It is worth noting that it takes longer if more attributes are to be joined to the point layer attribute table. For example, if the JOIN_FIELDS parameter is empty:

'JOIN_FIELDS':[]

instead of

'JOIN_FIELDS':['SOVEREIGNT']

then the the Join attributes by location takes almost 16 seconds. (The country layer contains 71 attributes after all.)

(The SAGA tool currently allows only joining one attribute at a time.)

QGIS 3 Server deployment showcase with Python superpowers

Recently I was invited by the colleagues from OpenGIS.ch to lend a hand in a training session about QGIS server.

This was a good opportunity to update my presentation for QGIS3, to fix a few bugs and to explore the powerful capabilities of QGIS server and Python.

As a result, I published the full recipe of a Vagrant VM on github: https://github.com/elpaso/qgis3-server-vagrant

The presentation is online here: http://www.itopen.it/bulk/qgis3-server/

What’s worth mentioning is the sample plugins (I’ll eventually package and upload them to the official plugin site):

 

The VM uses 4 different (although similar) deployment strategies:

  • good old Apache + mod_fcgi and plain CGI
  • Nginx + Fast CGI
  • Nginx + standalone HTTP Python wrapped server
  • Nginx + standalone WSGI Python wrapped server

Have fun with QGIS server: it was completely refactored in QGIS 3 and it’s now better than ever!

 

(Nederlands) Je eerste 3-D kaart in QGIS 3.0

Sorry, this entry is only available in the Dutch language

Use your android phone’s GPS in QGIS

Do you want to share your GPS data from your phone to QGIS? Here is how:   QGIS comes with a core plugin named GPS Tools that can be enabled in the Plugin installer dialog:   There are several ways to forward data from your phone and most of them are very well described in the QGIS manual page: https://docs.qgis.org/testing/en/docs/user_manual/working_with_gps/plugins_gps.html What I’m going to describe here is mostly useful when your phone and your host machine running QGIS are on the same network (for example they are connected to the same WiFi access point) and it is based on the simple application GPS 2 NET   Once the application is installed and started on your phone, you need to know the IP address of the phone, on a linux box you can simply run a port scanner and it will find all devices connected to the port 6000 (the default port used by GPS 2 NET):  

# Assuming your subnet is 192.168.9

nmap -p 6000 192.168.1.*

Nmap scan report for android-8899989888d02271.homenet.telecomitalia.it (192.168.99.50)
Host is up (0.0093s latency).
PORT STATE SERVICE
6000/tcp open X11

  Now, in QGIS you can open the plugin dialog through Vector -> GPS -> GPS Tools and enter the IP address and port of your GPS device:   Click on Connect button on the top right corner (mouse over the gray square for GPS status information)   Start digitizing!

Where's my .qgis3 Folder?

There's been several posts to GIS StackExchange along the lines of:

Where's my .qgis3 folder?

Prior to QGIS 3, the .qgis/.qgis2 folder was found under your home directory. At version 3, the folder has moved to a more standard profile location for your operating system.

There are a couple of ways to determine where the folder is located:

  • Use the Settings->User Profiles->Open active profile folder menu item
  • Use QgsApplication.qgisSettingsDirPath from Python or the console

Here are the "standard" locations for Linux, Mac, and Windows, as found under your HOME directory:

  • Linux:
    • .local/share/QGIS/QGIS3/profiles/default
  • Mac OS X:
    • Library/Application Support/QGIS/QGIS3/profiles/default
  • Windows:
    • AppData\Roaming\QGIS\QGIS3\profiles\default

To get the location of your plugins directory, just add python/plugins to the appropriate location above. For example:

AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins

From the Settings->User Profiles menu, you'll notice a New profile item. This allows you to have multiple configurations of QGIS 3. Each new profile is created in the same "base" location as listed above. For example:

AppData\Roaming\QGIS\QGIS3\profiles\new_profile

Implementing an in-house “New Project Wizard” for QGIS

Recently, we were required to implement a custom “New Project Wizard” for use in a client’s internal QGIS installation. The goal here was that users would be required to fill out certain metadata fields whenever they created a new QGIS project.

Fortunately, the PyQGIS (and underlying Qt) libraries makes this possibly, and relatively straightforward to do. Qt has a powerful API for creating multi-page “wizard” type dialogs, via the QWizard and QWizardPage classes. Let’s have a quick look at writing a custom wizard using these classes, and finally we’ll hook it into the QGIS interface using some PyQGIS magic.

We’ll start super simple, creating a single page wizard with no settings. To do this we first create a Page1 subclass of QWizardPage, a ProjectWizard subclass of QWizard, and a simple runNewProjectWizard function which launches the wizard. (The code below is designed for QGIS 3.0, but will run with only small modifications on QGIS 2.x):


class Page1(QWizardPage):

    def __init__(self, parent=None):
        super().__init__(parent)
        self.setTitle('General Properties')
        self.setSubTitle('Enter general properties for this project.')


class ProjectWizard(QWizard):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        
        self.addPage(Page1(self))
        self.setWindowTitle("New Project")


def runNewProjectWizard():
    d=ProjectWizard()
    d.exec()

If this code is executed in the QGIS Python console, you’ll see something like this:

Not too fancy (or functional) yet, but still not bad for 20 lines of code! We can instantly make this a bit nicer by inserting a custom logo into the widget. This is done by calling setPixmap inside the ProjectWizard constructor.


class ProjectWizard(QWizard):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        
        self.addPage(Page1(self))
        self.setWindowTitle("New Project")

        logo_image = QImage('path_to_logo.png')
        self.setPixmap(QWizard.LogoPixmap, QPixmap.fromImage(logo_image))

That’s a bit nicer. QWizard has HEAPS of options for tweaking the wizards — best to read about those over at the Qt documentation. Our next step is to start adding some settings to this wizard. We’ll keep things easy for now and just insert a number of text input boxes (QLineEdits) into Page1:


class Page1(QWizardPage):

    def __init__(self, parent=None):
        super().__init__(parent)
        self.setTitle('General Properties')
        self.setSubTitle('Enter general properties for this project.')

        # create some widgets
        self.project_number_line_edit = QLineEdit()
        self.project_title_line_edit = QLineEdit()
        self.author_line_edit = QLineEdit()        
        
        # set the page layout
        layout = QGridLayout()
        layout.addWidget(QLabel('Project Number'),0,0)
        layout.addWidget(self.project_number_line_edit,0,1)
        layout.addWidget(QLabel('Title'),1,0)
        layout.addWidget(self.project_title_line_edit,1,1)
        layout.addWidget(QLabel('Author'),2,0)
        layout.addWidget(self.author_line_edit,2,1)
        self.setLayout(layout)

There’s nothing particularly new here, especially if you’ve used Qt widgets before. We make a number of QLineEdit widgets, and then create a grid layout containing these widgets and accompanying labels (QLabels). Here’s the result if we run our wizard now:

So now there’s the option to enter a project number, title and author. The next step is to force users to populate these fields before they can complete the wizard. Fortunately, QWizardPage has us covered here and we can use the registerField() function to do this. By calling registerField, we make the wizard aware of the settings we’ve added on this page, allowing us to retrieve their values when the wizard completes. We can also use registerField to automatically force their population by appending a * to the end of the field names. Just like this…

class Page1(QWizardPage):
    def __init__(self, parent=None):
        super().__init__(parent)
        ...
        self.registerField('number*',self.project_number_line_edit)
        self.registerField('title*',self.project_title_line_edit)
        self.registerField('author*',self.author_line_edit)

If we ran the wizard now, we’d be forced to enter something for project number, title and author before the Finish button becomes enabled. Neat! By registering the fields, we’ve also allowed their values to be retrieved after the wizard completes. Let’s alter runNewProjectWizard to retrieve these values and do something with them:

def runNewProjectWizard():
   d=ProjectWizard()
   d.exec()

   # Set the project title
   title=d.field('title')
   QgsProject.instance().setTitle(d.field('title'))

   # Create expression variables for the author and project number
   number=d.field('number')
   QgsExpressionContextUtils.setProjectVariable(QgsProject.instance(),'project_number', number)
   author=d.field('author')
   QgsExpressionContextUtils.setProjectVariable(QgsProject.instance(),'project_author', author)
 

Here, we set the project title directly and create expression variables for the project number and author. This allows their use within QGIS expressions via the @project_number and @project_author variables. Accordingly, they can be embedded into print layout templates so that layout elements are automatically populated with the corresponding author and project number. Nifty!

Ok, let’s beef up our wizard by adding a second page, asking the user to select a sensible projection (coordinate reference system) for their project. Thanks to improvements in QGIS 3.0, it’s super-easy to embed a powerful pre-made projection selector widget into your scripts, which even includes a handy preview of the area of the world that the projection is valid for.


class Page2(QWizardPage):

    def __init__(self, parent=None):
        super().__init__(parent)
        self.setTitle('Project Coordinate System')
        self.setSubTitle('Choosing an appropriate projection is important to ensure accurate distance and area measurements.')
        
        self.proj_selector = QgsProjectionSelectionTreeWidget()
        layout = QVBoxLayout()
        layout.addWidget(self.proj_selector)
        self.setLayout(layout)
        
        self.registerField('crs',self.proj_selector)
        self.proj_selector.crsSelected.connect(self.crs_selected)
        
    def crs_selected(self):
        self.setField('crs',self.proj_selector.crs())
        self.completeChanged.emit()
        
    def isComplete(self):
        return self.proj_selector.crs().isValid()

There’s a lot happening here. First, we subclass QWizardPage to create a second page in our widget. Then, just like before, we add some widgets to this page and set the page’s layout. In this case we are using the standard QgsProjectionSelectionTreeWidget to give users a projection choice. Again, we let the wizard know about our new setting by a call to registerField. However, since QWizard has no knowledge about how to handle a QgsProjectionSelectionTreeWidget, there’s a bit more to do here. So we make a connection to the projection selector’s crsSelected signal, hooking it up to a function which sets the wizard’s “crs” field value to the widget’s selected CRS. Here, we also emit the completeChanged signal, which indicates that the wizard page should re-validate the current settings. Lastly, we override QWizardPage’s isComplete method, checking that there’s a valid CRS selection in the selector widget. If we run the wizard now we’ll be forced to choose a valid CRS from the widget before the wizard allows us to proceed:

Lastly, we need to adapt runNewProjectWizard to also handle the projection setting:


def runNewProjectWizard():
    d=ProjectWizard()
    d.exec()

    # Set the project crs
    crs=d.field('crs')
    QgsProject.instance().setCrs(crs)

    # Set the project title
    title=d.field('title')
    ...

Great! A fully functional New Project wizard. The final piece of the puzzle is triggering this wizard when a user creates a new project within QGIS. To do this, we hook into the iface.newProjectCreated signal. By connecting to this signal, our code will be called whenever the user creates a new project (after all the logic for saving and closing the current project has been performed). It’s as simple as this:


iface.newProjectCreated.connect(runNewProjectWizard)

Now, whenever a new project is made, our wizard is triggered – forcing users to populate the required fields and setting up the project accordingly!

There’s one last little bit to do – we also need to prevent users cancelling or closing the wizard before completing it. That’s done by changing a couple of settings in the ProjectWizard constructor, and by overriding the default reject method (which prevents closing the dialog by pressing escape).


class ProjectWizard(QWizard):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        ...
        self.setOption(QWizard.NoCancelButton, True)
        self.setWindowFlags(self.windowFlags() | QtCore.Qt.CustomizeWindowHint)
        self.setWindowFlags(self.windowFlags() & ~QtCore.Qt.WindowCloseButtonHint)

    def reject(self):
        pass

Here’s the full version of our code, ready for copying and pasting into the QGIS Python console:


icon_path = '/home/nyall/nr_logo.png'

class ProjectWizard(QWizard):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        
        self.addPage(Page1(self))
        self.addPage(Page2(self))
        self.setWindowTitle("New Project")
        
        logo_image=QImage('path_to_logo.png')
        self.setPixmap(QWizard.LogoPixmap, QPixmap.fromImage(logo_image))
        
        self.setOption(QWizard.NoCancelButton, True)
        self.setWindowFlags(self.windowFlags() | QtCore.Qt.CustomizeWindowHint)
        self.setWindowFlags(self.windowFlags() & ~QtCore.Qt.WindowCloseButtonHint)
    def reject(self):
        pass
class Page1(QWizardPage):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        self.setTitle('General Properties')
        self.setSubTitle('Enter general properties for this project.')

        # create some widgets
        self.project_number_line_edit = QLineEdit()
        self.project_title_line_edit = QLineEdit()
        self.author_line_edit = QLineEdit()        
        
        # set the page layout
        layout = QGridLayout()
        layout.addWidget(QLabel('Project Number'),0,0)
        layout.addWidget(self.project_number_line_edit,0,1)
        layout.addWidget(QLabel('Title'),1,0)
        layout.addWidget(self.project_title_line_edit,1,1)
        layout.addWidget(QLabel('Author'),2,0)
        layout.addWidget(self.author_line_edit,2,1)
        self.setLayout(layout)
        
        self.registerField('number*',self.project_number_line_edit)
        self.registerField('title*',self.project_title_line_edit)
        self.registerField('author*',self.author_line_edit)
 
 
class Page2(QWizardPage):
    
    def __init__(self, parent=None):
        super().__init__(parent)
        self.setTitle('Project Coordinate System')
        self.setSubTitle('Choosing an appropriate projection is important to ensure accurate distance and area measurements.')
        
        self.proj_selector = QgsProjectionSelectionTreeWidget()
        layout = QVBoxLayout()
        layout.addWidget(self.proj_selector)
        self.setLayout(layout)
        
        self.registerField('crs',self.proj_selector)
        self.proj_selector.crsSelected.connect(self.crs_selected)
        
    def crs_selected(self):
        self.setField('crs',self.proj_selector.crs())
        self.completeChanged.emit()
        
    def isComplete(self):
        return self.proj_selector.crs().isValid()
 
        
def runNewProjectWizard():
    d=ProjectWizard()
    d.exec()
    
    # Set the project crs
    crs=d.field('crs')
    QgsProject.instance().setCrs(crs)
    
    # Set the project title
    title=d.field('title')
    QgsProject.instance().setTitle(d.field('title'))

    # Create expression variables for the author and project number
    number=d.field('number')
    QgsExpressionContextUtils.setProjectVariable(QgsProject.instance(),'project_number', number)
    author=d.field('author')
    QgsExpressionContextUtils.setProjectVariable(QgsProject.instance(),'project_author', author)
    
    
iface.newProjectCreated.connect(runNewProjectWizard)

Welcome QGIS 3 and bye bye Madeira

Last week I’ve been in Madeira at the hackfest, like all the past events this has been an amazing happening, for those of you who have never been there, a QGIS hackfest is typically an event where QGIS developers and other pasionate contributors like documentation writers, translators etc. gather together to discuss the future of their beloved QGIS software. QGIS hackfest are informal events where meetings are scheduled freely and any topic relevant to the project can be discussed. This time we have brought to the table some interesting topics like:

  • the future of processing providers: should they be part of QGIS code or handled independently as plugins?
  • the road forward to a better bug reporting system and CI platform: move to gitlab?
  • the certification program for QGIS training courses: how (and how much) training companies should give back to the project?
  • SWOT analysis of current QGIS project: very interesting discussion about the status of the project.
  • QGIS Qt Quick modules for mobile QGIS app
Tehre were also some mentoring sessions where I presented:
  • How to set up a development environment and make your first pull request
  • How to write tests for QGIS (in both python and C++)
  At this link you can find all the video recordings of the sessions: https://github.com/qgis/QGIS/wiki/DeveloperMeetingMadeira2018   Here is a link to the Vagrant QGIS developer VM I’ve prepared for the session: https://github.com/elpaso/qgis-dev-vagrant/   I’ve got a good feedback from other devs about my sessions and I’m really happy that somebody found them useful, one of the main goals of a QGIS hackfest should really be to help other developers to ramp up quicly into the project. Other than that, I’ve also find the time to update to QGIS 3.0 some of my old plugins like GeoCoding and QuickWKT.   Thanks to Giovanni Manghi and to Madeira Government for the organizazion and thanks to all QGIS sponsors and donors!   About me: I started as a QGIS plugin author, continued as the developer of the plugin official repository at https://plugins.qgis.org and now I’m one of the top 5 QGIS core contributors. After almost 10 years that I’m in the QGIS project I’m now not only a proud member of the QGIS community but also an advocate for the open source GIS software movement.

QGIS 3.0 has been released

We are very pleased to convey the announcement of the  QGIS 3.0 major release called “Girona”.

The whole QGIS community has been working hard on so many changes for the last two years. This version is a major step in the evolution of QGIS. There are a lot of features, and many changes to the underlying code.

At Oslandia, we pushed some great new features, a lot of bugfixes and made our best to help in synchronizing efforts with the community.

Please note that the installers and binaries are still currently being built for all platforms, Ubuntu and Windows are already there,  and Mac packages are still building.

The ChangeLog and the documentation are still being worked on so please start testing that brand new version and let’s make it stronger and stronger together. The more contributors, the better!

While QGIS 3.0 represent a lot of work, note that this version is not a “Long Term Release” and may not be as stable as required for production work.

We would like to thank all the contributors who helped making QGIS 3 a reality.

Oslandia contributors should acknowledged too : Hugo Mercier, Paul Blottière, Régis Haubourg, Vincent Mora and Loïc Bartoletti.

We also want to thank some those who supported directly important features of QGIS3 :

Orange

The QWAT / QGEP organization

The French Ministry for an Ecological and Inclusive Transition

ESG

and also Grenoble Alpes Métropole

(Nederlands) Waarden in samengestelde velden gebruiken

Sorry, this entry is only available in the Dutch language

Resources for QGIS3

The release of 3.0 is really close now. If you want to know what’s new or are just looking for interesting ways to pass the time until the packages land, check out the following QGIS3 resources.

For users

For more recordings from the developer meeting in Madeira check my Youtube playlist.

For developers

If you have further reading recommendations, please post them in the comments below.

 

Diagrams for features

Imagine you have a list of different features at locations and you want to display those on a map like this: The QGIS diagrams expect a column for each pie or bar, but our features are all listed in one column: And our geometry is stored in a good old shapefile: So, we can use … Continue reading Diagrams for features

TimeManager 2.5 published

TimeManager 2.5 is quite likely going to be the final TimeManager release for the QGIS 2 series. It comes with a couple of bug fixes and enhancements:

  • Fixed #245: updated help.htm
  • Fixed #240: now hiding unmanageable WFS layers
  • Fixed #220: fixed issues with label size
  • Fixed #194: now exposing additional functions: animation_time_frame_size, animation_time_frame_type, animation_start_datetime, animation_end_datetime

Besides updating the help, I also decided to display it more prominently in the settings dialog (similarly to how the help is displayed in the field calculator or in Processing):

So far, I haven’t started porting to QGIS 3 yet. If you are interested in TimeManager and want to help, please get in touch.

On this note, let me leave you with a couple of animation inspirations from the Twitterverse:

Porting Processing scripts to QGIS3

I’ll start with some tech talk first. Feel free to jump to the usage example further down if you are here for the edge bundling plugin.

As you certainly know, QGIS 3 brings a lot of improvements and under-the-hood changes. One of those changes affects all Python scripts. They need to be updated to Python 3 and the new PyQGIS API. (See the official migration guide for details.)

To get ready for the big 3.0 release, I’ve started porting my Processing tools. The edge bundling script is my first candidate for porting to QGIS 3. I also wanted to use this opportunity to “upgrade” from a simple script to a plugin that integrates into Processing.

I used Alexander Bruy’s “prepair for Processing” plugin as a template but you can also find an example template in your Processing folder. (On my system, it is located in C:\OSGeo4W64\apps\qgis-dev\python\plugins\processing\algs\exampleprovider.)

Since I didn’t want to miss the advantages of a good IDE, I set up PyCharm as described by Heikki Vesanto. This will give you code completion for Python 3 and PyQGIS which is very helpful for refactoring and porting. (I also tried Eclipse with PyDev but if you don’t have a favorite IDE yet, I find PyCharm easier to install and configure.)

My PyCharm startup script qgis3_pycharm.bat is a copy of C:\OSGeo4W64\bin\python-qgis-dev.bat with the last line altered to start PyCharm:

@echo off
call "%~dp0\o4w_env.bat"
call qt5_env.bat
call py3_env.bat
@echo off<span data-mce-type="bookmark" style="display: inline-block; width: 0px; overflow: hidden; line-height: 0;" class="mce_SELRES_start"></span>
path %OSGEO4W_ROOT%\apps\qgis-dev\bin;%PATH%
set QGIS_PREFIX_PATH=%OSGEO4W_ROOT:\=/%/apps/qgis-dev
set GDAL_FILENAME_IS_UTF8=YES
rem Set VSI cache to be used as buffer, see #6448
set VSI_CACHE=TRUE
set VSI_CACHE_SIZE=1000000
set QT_PLUGIN_PATH=%OSGEO4W_ROOT%\apps\qgis-dev\qtplugins;%OSGEO4W_ROOT%\apps\qt5\plugins
set PYTHONPATH=%OSGEO4W_ROOT%\apps\qgis-dev\python;%PYTHONPATH%
start /d "C:\Program Files\JetBrains\PyCharm\bin\" pycharm64.exe

In PyCharm File | Settings, I configured the OSGeo4W Python 3.6 interpreter and added qgis-dev and the plugin folder to its path:

With this setup done, we can go back to the code.

I first resolved all occurrences of import * in my script to follow good coding practices. For example:

from qgis.core import *

became

from qgis.core import QgsFeature, QgsPoint, QgsVector, QgsGeometry, QgsField, QGis<span data-mce-type="bookmark" style="display: inline-block; width: 0px; overflow: hidden; line-height: 0;" class="mce_SELRES_start"></span>

in this PR.

I didn’t even run the 2to3 script that is provided to make porting from Python 2 to Python 3 easier. Since the edge bundling code is mostly Numpy, there were almost no changes necessary. The only head scratching moment was when Numpy refused to add a map() return value to an array. So (with the help of Stackoverflow of course) I added a work around to convert the map() return value to an array as well:

flocal_x = map(forcecalcx, subtr_x, subtr_y, distance)
electrostaticforces_x[e_idx, :] += np.array(list(flocal_x))

The biggest change related to Processing is that the VectorWriter has been replaced by a QgsFeatureSink. It’s defined as a parameter of the edgebundling QgsProcessingAlgorithm:

self.addParameter(QgsProcessingParameterFeatureSink(
   self.OUTPUT,
   self.tr("Bundled edges"),
   QgsProcessing.TypeVectorLine)
)

And when the algorithm is run, the sink is filled with the output features:

(sink, dest_id) = self.parameterAsSink(
   parameters, self.OUTPUT, context,
   source.fields(), source.wkbType(), source.sourceCrs()
)

# code that creates features

sink.addFeature(feat, QgsFeatureSink.FastInsert)

The ported plugin is available on Github.

The edge bundling plugin in action

I haven’t uploaded the plugin to the official plugin repository yet, but you can already download if from Github and give it a try:

For this example, I’m using taxi pick-up and drop-off data provided by the NYC Taxi & Limousine Commission. I downloaded the January 2017 green taxi data and extracted all trips for the 1st of January. Then I created origin-destination (OD) lines using the QGIS virtual layer feature:

To get an interesting subset of the data, I extracted only those OD flows that cross the East River and have a count of at least 5 taxis:

Now the data is ready for bundling.

If you have installed the edge bundling plugin, the force-directed edge bundling algorithm should be available in the Processing toolbox. The UI of the edge bundling algorithm looks pretty much the same as it did for the QGIS 2 Processing script:

Since this is a small dataset with only 148 OD flows, the edge bundling processes is pretty quick and we can explore the results:

Beyond this core edge bundling algorithm, the repository also contains two more scripts that still need to be ported. They include dependencies on sklearn, so it will be interesting to see how straightforward it is to convert them.

Exploring Reports in QGIS 3.0 – the Ultimate Guide!

In 2017 North Road ran a crowd funding campaign for extending QGIS’ Print Composer and adding a brand new reporting framework to QGIS. Thanks to numerous generous backers, this campaign was a success. With the final QGIS 3.0 release just around the corner, we thought this was a great time to explore the new reporting engine and what it offers.

We’ll start with a relatively simple project, containing some administrative boundaries, populated places, ports and airports.

Using the “Project” – “New Report” command, we then create a new blank report. Initially, there’s not much to look at – the dialog which is displayed looks much like the QGIS 3.0 Layout Designer, except for the new “Report Organizer” panel shown on the left:

QGIS reports can consist of multiple, nested sections. In our new blank report we initially have only the main report section. The only options present for this report section is to include an optional header and footer for the report. If we enable these, the header will be included as the very first page (or pages… individual parts of reports can be multi-page if desired) in the report, and the footer would be the last page. Let’s go ahead and enable the header, and hit the “Edit” button next to it:

A few things happen as a result. Firstly, an edit pencil is now shown next to the “Report” section in the Report Organizer, indicating that the report section is currently being edited in the designer. We also see a new blank page shown in the designer itself, with the small “Report Header” title. In QGIS reports, every component of the report is made up of individual layouts. They can be created and modified using the exact same tools as are available for standard print layouts – so you can use any desired combination of labels, pictures, maps, tables, etc. Let’s add some items to our report header to demonstrate:

We’ll also create a simple footer for the report, by checking the “Include report footer” option and hitting “Edit“.

Before proceeding further, let’s export this report and see what we get. Exporting is done from the Report menu – in this case we select “Export Report as PDF” to render the whole report to a PDF file. Here’s the not-very-impressive result – a two page PDF consisting of our header and footer:

Let’s make things more interesting. By hitting the green “+” button in the Report Organizer, we’re given a choice of new sections to add to our report.

Currently there’s two options – a “Single section” and a “Field group“. Expect this list to grow in future QGIS releases, but for now we’ll add a Field Group to our report. At its most basic level, you can think of a Field Group as the equivalent of a print atlas. You select a layer to iterate over, and the report will insert a section for each feature found. Selecting the new Field Group section reveals a number of new related settings:

In this case we’ve setup our Field Group so that we iterate over all the states from the “Admin Level 1” layer, using the values from the “adm1name” field. The same options for header and footer are present, together with a new option to include a “body” for this section. We’ll do that, and edit the body:

We’ve setup this body with a map (set to follow the current report feature – just like how a map item in an atlas can follow the current atlas feature), and a label showing the state’s name. If we went ahead and exported our report now, we’d get something like this:

First, the report header, than a page for each state, and finally the report footer. So more or less an atlas, but with a header and footer page. Let’s make things more interesting by adding a subsection to our state group. We do this by first selecting the state field group in the organizer, then hitting the + button and adding a new Field Group:

When a field group is iterating over its features, it will automatically filter these features to match the feature attributes from its parent groups. In this case, the subsection we added will iterate over a “Populated Places” layer, including a body section for each place encountered. The magic here is that the Populated Places layer has an attribute named “adm1name“, tagging each place with the state it’s contained within (if you’re lucky your data will already be structured like this – if not, run the Processing “Join by Location” algorithm and create your own field). When we export this report, QGIS will grab the first state from the Admin Level 1 layer, and then iterate over all the Populated Places with a matching “adm1name” value. Here’s what we get:

(Here we created a basic body for the Populated Places group, including a map of the place and a table of some place attributes). So our report is now a report header, a page for each state followed by a page for every populated place within that state, and finally the report footer. If we were to add a header for the Populated Places group, it would be included just before listing the populated places for each state:

Similarly, a footer for the Populated Places group would be inserted after the final place for each state is included.

In addition to nested subsections, subsections in a report can also be included consecutively. If we add a second subsection to the Admin Level 1 group for Airports, then our report will first list ALL the populated places for each state, followed by all the airports within that state, before proceeding to the next state. In this case our report would be structured like this:

(The key point here is that our Airports group is a subsection of the Admin Level 1 group – not the Populated Places group). Here’s what our report could look like now:

Combining nested and consecutive sections, together with section headers and footers allows for tons of flexibility. For instance, in the below report we add another field group as a child of the main report for the Ports layer. Now, after listing the states together with their populated places and airports, we’ll get a summary list of all the ports in the region:

This results in the last part of our report exporting as:

As you can start to imagine, reports in QGIS are extremely powerful and flexible! We’re extremely thankful for all the backers of our crowd funding campaign, without whom this work would not have been possible.

Stay tuned for more reporting and layouts work we have planned for QGIS 3.2!

 

(Nederlands) Programma gebruikersmiddag compleet!

Sorry, this entry is only available in the Dutch language

  • Page 1 of 37 ( 728 posts )
  • >>
  • qgis

Back to Top

Sponsors