Page 2 of 32 (634 posts)

  • talks about »
  • qgis


Last update:
Thu Oct 20 16:15:22 2016

A Django site.

QGIS Planet

The road to QGIS 3.0 – part 1

qgis_icon.svgAs we discussed in QGIS 3 is under way, the QGIS project is working toward the next major version of the application and these developments have major impact on any custom scripts or plugins you’ve developed for QGIS.

We’re now just over a week into this work, and already there’s been tons of API breaking changes landing the code base. In this post we’ll explore some of these changes, what’s motivated them, and what they mean for your scripts.

The best source for keeping track of these breaking changes is to watch the API break documentation on GitHub. This file is updated whenever a change lands which potentially breaks plugins/scripts, and will eventually become a low-level guide to porting plugins to QGIS 3.0.

API clean-ups

So far, lots of the changes which have landed have related to cleaning up the existing API. These include:

Removal of deprecated API calls

The API has been frozen since QGIS 2.0 was released in 2013, and in the years since then many things have changed. As a result, different parts of the API were deprecated along the way as newer, better ways of doing things were introduced. The deprecated code was left intact so that QGIS 2.x plugins would still all function correctly. By removing these older, deprecated code paths it enables the QGIS developers to streamline the code, remove hacky workarounds, untested methods, and just generally “clean things up”. As an example, the older labelling system which pre-dates QGIS 2.0 (it had no collision detection, no curved labels, no fancy data defined properties or rule based labelling!) was still floating around just in case someone tried to open a QGIS 1.8 project. That’s all gone now, culling over 5000 lines of outdated, unmaintained code. Chances are this won’t affect your plugins in the slightest. Other removals, like the removal of QgsMapRenderer (the renderer used before multi-threaded rendering was introduced) likely have a much larger impact, as many scripts and plugins were still using QgsMapRenderer classes and calls. These all need to be migrated to the new QgsMapRendererJob and QgsMapSettings classes.

Renaming things for consistency

Consistent naming helps keep the API predictable and more user friendly. Lots of changes have landed so far to make the naming of classes and methods more consistent. These include things like:

  • Making sure names use consistent capitalization. Eg, there was previously methods named “writeXML” and “writeXml”. These have all been renamed to consistently use camel case, including for acronyms. (In case you’re wondering – this convention is used to follow the Qt library conventions).
  • Consistent use of terms. The API previously used a mix of “CRS” and “SRS” for similar purposes – it now consistently uses “CRS” for a coordinate reference system.
  • Removal of abbreviations. Lots of abbreviated words have been removed from the names, eg “destCrs” has become “destinationCrs”. The API wasn’t consistently using the same abbreviations (ie “dest”/”dst”/”destination”), so it was decided to remove all use of abbreviated words and replace them with the full word. This helps keep things predictable, and is also a bit friendlier for non-native English speakers.

The naming changes all need to be addressed to make existing scripts and plugins compatible with QGIS 3.0. It’s potentially quite a lot of work for plugin developers, but in the long term it will make the API easier to use.

Changes to return and argument types

There’s also been lots of changes relating to the types of objects returned by functions, or the types of objects used as function arguments. Most of these involve changing the c++ types from pointers to references, or from references to copies. These changes are being made to strengthen the API and avoid potential crashes. In most cases they don’t have any affect on PyQGIS code, with some exceptions:

  • Don’t pass Python “None” objects as QgsCoordinateReferenceSystems or as QgsCoordinateTransforms. In QGIS 3.0 you must pass invalid QgsCoordinateReferenceSystem objects (“QgsCoordinateReferenceSystem()”) or invalid QgsCoordinateTransform (“QgsCoordinateTransform()”) objects instead.

Transparent caching of CRS creation

The existing QgsCRSCache class has been removed. This class was used to cache the expensive results of initializing a QgsCoordinateReferenceSystem object, so that creating the same CRS could be done instantly and avoid slow databases lookups. In QGIS 3.0 this caching is now handled transparently, so there is no longer a need for the separate QgsCRSCache and it has been removed. If you were using QgsCRSCache in your PyQGIS code, it will need to be removed and replaced with the standard QgsCoordinateReferenceSystem constructors.

This change has the benefit that many existing plugins which were not explicitly using QgsCRSCache will now gain the benefits of the faster caching mechanism – potentially this could dramatically speed up existing plugin algorithms.

In summary

The QGIS developers have been busy fixing, improving and cleaning up the PyQGIS API. We recognise that these changes result in significant work for plugin and script developers, so we’re committed to providing quality documentation for how to adapt your code for these changes, and we will also investigate the use of automated tools to help ease your code transition to QGIS 3.0. We aren’t making changes lightly, but instead are carefully refining the API to make it more predictable, streamlined and stable.

If you’d like assistance with (or to outsource) the transition of your existing QGIS scripts and plugins to QGIS 3.0, just contact us at North Road to discuss. Every day we’re directly involved in the changes moving to QGIS 3.0, so we’re ideally placed to make this transition painless for you!

Recent labelling improvements in QGIS master

If you’re not like me and don’t keep a constant eye over at QGIS development change log (be careful – it’s addictive!), then you’re probably not aware of a bunch of labelling improvements which recently landed in QGIS master version. I’ve been working recently on a large project which involves a lot (>300) of atlas map outputs, and due to the size of this project it’s not feasible to manually tweak placements of labels. So, I’ve been totally at the mercy of QGIS’ labelling engine for automatic label placements. Generally it’s quite good but there were a few things missing which would help this project. Fortunately, due to the open-source nature of QGIS, I’ve been able to dig in and enhance the label engine to handle these requirements (insert rhetoric about beauty of open source here!). Let’s take a look at them one-by-one:

Data defined quadrant in “Around Point” placement mode

First up, it’s now possible to specify a data defined quadrant when a point label is set to the Around Point placement mode. In the past, you had a choice of either Around Point mode, in which QGIS automatically places labels around point features in order to maximise the number of labels shown, or the Offset from Point mode, in which all labels are placed at a specified position relative to the points (eg top-left). In Offset from Point mode you could use data defined properties to force labels for a feature to be placed at a specific relative position by binding the quadrant to a field in your data. This allowed you to manually tweak the placement for individual labels, but at the cost of every other label being forced to the same relative position. Now, you’ve also got the option to data define the relative position when in Around Point mode, so that the rest of the labels will fall back to being automatically placed. Here’s a quick example – I’ll start with a layer with labels in Around Point mode:

Around Point placement mode
Around Point placement mode

You can see that some labels are sitting to the top right of the points, others to the bottom right, and some in the top middle, in order to fit all the labels for these points. With this new option, I can setup a data defined quadrant for the labels, and then force the ‘Tottenham’ label (top left of the map) to display below and to the left of the point:

Setting a data-defined quadrant
Setting a data-defined quadrant

Here’s what the result looks like:

Manually setting the quadrant for the Tottenham label
Manually setting the quadrant for the Tottenham label

The majority of the labels are still auto-placed, but Tottenham is now force to the lower left corner.

Data defined label priority

Another often-requested feature which landed recently is the ability to set the priority for individual labels. QGIS has long had the ability to set the priority for an entire labelling layer, but you couldn’t control the priority of features within a layer. That would lead to situations like that shown below, where the most important central station (the green point) hasn’t been labelled:

What... no label for the largest station in Melbourne?
What… no label for the largest station in Melbourne?

By setting a data defined priority for labels, I can set the priority either via values manually entered in a field or by taking advantage of an existing “number of passengers” field present in my data. End result is that this central station is now prioritised over any others:

Much better! (in case you're wondering... I've manually forced some other non-optimal placement settings for illustrative purposes!)
Much better! (in case you’re wondering… I’ve manually forced some other non-optimal placement settings for illustrative purposes!)

Obstacle only layers

The third new labelling feature is the option for “Obstacle only” layers. What this option does is allow a non-labelled layer to act as an obstacle for the labels in other layers, so they will be discouraged from drawing labels over the features in the obstacle layer. Again, it’s best demonstrated with an example. Here’s my stations layer with labels placed automatically – you can see that some labels are placed right over the features in the rail lines layer:

Labels over rail lines...
Labels over rail lines…

Now, let’s set the rail lines layer to act as an obstacle for other labels:

... setting the layer as an obstacle...
… setting the layer as an obstacle…

The result is that labels will be placed so that they don’t cover the rail lines anymore! (Unless there’s no other choice). Much nicer.

No more clashing labels!
No more clashing labels!

Control over how polygons act as obstacles for labels

This change is something I’m really pleased about. It’s only applicable for certain situations, but when it works the improvements are dramatic.

Let’s start with my labelled stations map, this time with an administrative boundary layer in the background:

Stations with administrative boundaries
Stations with administrative boundaries

Notice anything wrong with this map? If you’re like me, you won’t be able to look past those labels which cross over the admin borders. Yuck. What’s happening here is that although my administrative regions layer is set to discourage labels being placed over features, there’s actually nowhere that labels can possibly be placed which will avoid this. The admin layer covers the entire map, so regardless of where the labels are placed they will always cover an administrative polygon feature. This is where the new option to control how polygon layers act as obstacles comes to the rescue:

...change a quick setting...
…change a quick setting…

Now, I can set the administrative layer to only avoid placing labels over feature’s boundaries! I don’t care that they’ll still be placed inside the features (since we have no choice!), but I don’t want them sitting on top of these boundaries. The result is a big improvement:

Much better!
Much better!

Now, QGIS has avoided placing labels over the boundaries between regions. Better auto-placement of labels like this means much less time required manually tweaking their positioning, and that’s always a good thing!

Draw only labels which fit inside a polygon

The last change is fairly self explanatory, so no nice screenshots here. QGIS now has the ability to prevent drawing labels which are too large to fit inside their corresponding polygon features. Again, in certain circumstances this can make a huge cartographic improvement to your map.

So there you go. Lots of new labelling goodies to look forward to when QGIS 2.12 rolls around.


Customising the TimeManager time stamp

TimeManager is a fantastic plugin for QGIS which allows you to create animated maps from your data. You can read all about it here and here, and there’s a really nice demonstration of it here.

I’ve been playing with TimeManager a fair bit over the last month, and thought I’d share a quick tip on improving the appearance of TimeManager’s time stamp. TimeManager includes some basic functionality for placing a time stamp in the corner of your outputs, but it’s fairly limited. There’s only some basic appearance options, and no way to control the date or time formats displayed.

Default TimeManager time stamp
Default TimeManager time stamp

But, there’s a trick we can use to get around this: use a temporary point layer for the time stamp label. Let me elaborate:

  1. Create a throwaway point layer. It doesn’t matter what fields or format this layer has.
  2. Add a single point feature to this layer at the place you’d like the improved time stamp to appear at.

    Add a single point feature
    …add a single point feature
  3. We don’t want to see the marker, so hide the symbol for this layer by setting it to use a transparent fill and outline.

    Transparent fill and outline
    Transparent fill and outline
  4. Then, enable labels for this layer. Here’s the trick – set the label expression for the label to use “animation_datetime()” (or for QGIS 2.8, “$animation_datetime”). This is a custom function provided by the TimeManager plugin which evaluates to the current frame’s date and time.

    Setting the layer's label expression
    Setting the layer’s label expression
  5. Now, you can use all the built-in options within QGIS for styling this label. Buffers, drop shadows, background shapes… anything!

    ...tweaking the label appearance
    …tweaking the label appearance
  6. Apply and check. Much nicer!

    Formatted timestamp
    A nicely formatted time stamp
  7. To tweak the formatting of the time stamp’s date and time, you can modify the label expression using the built-in ‘format_date’, ‘year’, ‘month’, etc functions. Let’s try “format_date(animation_datetime(),’ddd dd MMM yyyy’)”:

    Tweaked expression
    Tweaked expression

Now, our final formatted time stamp looks like this:

Final, formatted time stamp
Final, formatted time stamp

…and there we go. Using this simple trick allows you to take advantage of all the possibilities which the QGIS labelling and expression engines allow!

*Bonus points for the first person to use this technique along with data defined controls for animating the label colour/size!

QGIS 3 is underway – what does it mean for your plugins and scripts?

With the imminent release of QGIS 2.16, the development attention has now shifted to the next scheduled release – QGIS 3.0! If you haven’t been following the discussion surrounding this I’m going to try and summarise what exactly 3.0 means and how it will impact any scripts or plugins you’ve developed for QGIS.

qgis_icon.svgQGIS 3.0 is the first major QGIS release since 2.0 was released way back in September 2013. Since that release so much has changed in QGIS… a quick glance over the release notes for 2.14 shows that even for this single point release there’s been hundreds of changes. Despite this, for all 2.x releases the PyQGIS API has remained stable, and a plugin or script which was developed for use in QGIS 2.0 will still work in QGIS 2.16.

Version 3.0 will introduce the first PyQGIS API break since 2013. An API break like this is required to move QGIS to newer libraries such as Qt 5 and Python 3, and allows the development team the flexibility to tackle long-standing issues and limitations which cannot be fixed using the 2.x API. Unfortunately, the side effect of this API break is that the scripts and plugins which you use in QGIS 2.x will no longer work when QGIS 3.0 is released!

Numerous API breaking changes have already started to flow into QGIS, and 2.16 isn’t even yet publicly available. The best way to track these changes is to keep an eye on the “API changes” documentation.  This document describes all the changes which are flowing in which affect PyQGIS code, and describe how best they should be addressed by plugin and script maintainers. Some changes are quite trivial and easy to update code for, others are more extreme (such as changes surrounding moving to PyQt5 and Python 3) and may require significant time to adapt for.

I’d encourage all plugin and script developers to keep watching the API break documentation, and subscribe to the developers list for additional information about required changes as they are introduced.

If you’re looking for assistance or to outsource adaptation of your plugins and scripts to QGIS 3.0 – the team at North Road are ideally placed to assist! Our team includes some of the most experienced QGIS developers who are directly involved with the development of QGIS 3.0, so you can be confident knowing that your code is in good hands. Just contact us to discuss your QGIS development requirements.

You can read more about QGIS 3.0 API changes in The road to QGIS 3.0 – part 1.

Want to sponsor some QGIS features? Here’s some ideas…

I’ve been working on QGIS for a number of years now and, contrary to what I thought when I started, my wishlist seems to grow longer with every feature I add to QGIS! Unfortunately, almost all of my QGIS development work is done on a volunteer basis and it’s sometimes hard to justify the time required to tackle items on this list. So here’s your chance to help me fix this!

Here’s a quick list of things which I’d love to add to QGIS (or improve), but would need someone to step up and help sponsor their development:

  • Raster marker symbol type: Currently QGIS supports a number of marker symbol types (simple markers, font markers, SVG markers) but there’s no option to just use a raster image file for a symbol. A few versions back I added support for a raster image fill type, and now I’d love to do the same for markers. Options could include overriding the image size, rotation and opacity. And of course, all of these properties would be data-definable.
  • Paint effects for diagrams: The successful Kickstarter campaign meant that QGIS 2.10 includes a powerful framework for applying live effects to layers, including drop shadows, outer glows, blurs, and colour effects (plus lots of others!). I’d like to take this framework and allow effects to be applied to diagrams on a layer. Drop shadows and outer glows would really help aid the readability of diagrams by allowing them to sit on a different visual layer to the rest of the map. The effects framework was designed to allow reuse across all of QGIS, and diagrams would be the next logical step in this.

    Layer effects for diagrams! (Well... a mockup of them...)
    Layer effects for diagrams! (Well… a mockup of them…)
  • Additional diagram types/options: While we’re on the topic of diagrams, there’s lots more that we could do with QGIS’ diagram support. We’ve currently got support for pie charts, text diagrams and histograms, but there’s a lot of really nice diagram styles which we don’t yet support. Everybody loves infographics with nicely designed diagrams… so I’d love the chance to extend what’s possible using QGIS diagram engine. Some ideas include icon arrays, circle packing.
  • Adding a geometry widget in the attribute table: This feature has been on my mind a lot lately. What I’d like to add is a new “geometry widget” as the last column in a layer’s attribute table. This widget would allow you to do all sorts of modifications to the geometry attached to a feature. Possible options include clearing the geometry (resetting it to null), copying the geometry as WKT or GeoJSON, or pasting geometry into the feature from a WKT string (making it super easy to copy the geometry between features). This could also be extended in future to start incorporating the editing capabilities current possible through the Plain Geometry Editor plugin.

    Poor quality mockup of a geometry widget...
    Poor quality mockup of a geometry widget…
  • Options for non square/straight line legend patches: QGIS’ legend currently has no options for customising the shape of legend patches. Polygon layers in the legend are rectangles, line layers are straight lines — that’s it. There’s lots of room for improvement here. I’d like to add options for shapes such as circles, rounded rectangles, jagged lines, and possibly even custom shapes (via a WKT string or something similar).

    Custom legend shapes anyone?
    Custom legend shapes anyone?
  • Improving the heatmap plugin: The current heatmap plugin needs some love. The code and UI could do with a big refresh. I’d love a chance to totally revamp this plugin and move it into QGIS core code, and allow it to be used from within processing models. I’d also like to add additional hotspot techniques, such as Getis Ord Gi* hotspotting, to the plugin.
  • Extending the raster calculator: QGIS’ raster calculator was given a bunch of needed fixes and improvements in 2.10, but there’s more we could do. The major limitation with the calculator is that it currently only supports functions with at most two parameters. This needs to be fixed so that we can add a bunch of much desired functions to the calculator – eg min, max, avg, coalesce, if, etc… Lack of support for multi-parameter functions is really holding back what’s possible in the calculator.

Of course, this list is just a start. I’m always keen to chat about any other features you’d like to see added to QGIS (or even tackle specific pet-hate bugs or frustrations!). Just drop me an email at to discuss.

Oh, one last thing – I’m in the process of preparing for my next crowd funded feature for QGIS – and this one is big! More on that shortly.


How to effectively get things changed in QGIS

I’ve been heavily involved in the open source QGIS mapping project for a number of years now. During this time I’ve kept a close watch on the various mailing lists, issue trackers, stackexchange, tweets and other various means users have to provide feedback to the project. Recently, I’ve started to come to the conclusion that there’s a lot of fundamental confusion about how the project works and how users can get changes made to the project. Read on for these insights, but keep in mind that these are just my thoughts and not reflective of the whole community’s views!..

Firstly – QGIS is a community driven project. Unlike some open source projects (and unlike the commercial GIS offerings) there is no corporate backer or singular organisation directing the project. This means two things:

  1. The bad news: No-one will do your work for you. QGIS has been created through a mix of user-led contributions (ie, users who have a need to change something and dive in and do it themselves) and through commercially supported contributions (either organisations who offer commercial QGIS support pushing fixes because their customers are directly affected or because they’ve been contracted by someone to implement a particular change). There HAS been a number of volunteer contributions from developers who are just donating their time (for various reasons), but these contributions are very much the minority.
  2. The good news: YOU have the power to shape the project! (And whenever I say “you” – I’m referring directly to the person reading this, or the company you work for. Just pretend it’s in 24 point bold red blinking text.) Because QGIS is community driven (and not subject to the whims of any one particular enterprise) every user has the ability to implement changes and fixes in the program.

So how exactly can users get changes implemented in QGIS? Well, let’s take a look at all the possible different ways that changes get made and how effective each one is:

  1. YOU can make the changes yourself. This implies that you have the c++/Python skills required to make the changes, are able to find your way around the source code, and push through the initial hurdles of setting up a build environment and navigating git. This can be a significant time investment, but the ultimate result is that you can make whatever changes you want, and so long as your pull request is accepted you’ll get your changes directly into QGIS. You’ll find the QGIS team is very open to new contributors and will readily lend a hand if you need assistance navigating the source or for advise on the best way to make these changes. Just ask!
  2. YOU (or your employer) can pay (or “sponsor”) someone to make the changes on your behalf. Reinvesting some of those savings you’re making through using an open source program back into the program itself is a great idea, and everyone benefits. There’s numerous organisations who specialise in QGIS development (eg… my own consultancy, North Road). You can liaise with these organisations to get them to make the changes on your behalf. This is probably the most effective way of getting changes implemented. These organisations all have a history with QGIS development and this experience generally translates to much faster development then if you code it yourself. It’s also somewhat of a shortcut – if you hire a core QGIS developer to make your changes, then you can be confident that they are familiar with the coding style, policies, and long-term goals of the project and accordingly can get the changes accepted rapidly. The obvious down side of paying for changes is that, well, it costs money. Understandably, not everyone has the resources available to do this.
  3. Following on from option 2 – if you can’t directly sponsor changes yourself, you could help indirectly raise funds to pay for the changes. This is a great way to get changes implemented, because everyone has the power to do this. You could seek out similar organisations/users who have the same need and pool your resources, get involved with the local QGIS user group and raise funds together, organise a crowd-funding campaign, etc.
  4. Ask a developer to make the changes for you. This is not terribly effective – you’re basically asking someone to work for free, and take time away from their family/job/hobbies/social life to do work for you. That said, it does sometimes happen, and here’s a few reasons I can think of why:
    • You’ve build up enough “karma” within the project through other contributions. If someone has been heavily involved in the non-development side of the project (eg translations, documentation, helping users out on mailing lists/stackexchange, organising hackfests or user groups, etc) then developers are much more likely to want to help them out in turn.
    • You’ve got a fantastic idea which has just never occurred to anyone before. By bringing it to the attention of a developer you might trigger the “wow, I could really benefit from that too!” impulse which is hard-wired into some of us!
    • It’s a particularly interesting or challenging problem, and sometimes developers just like to extend themselves.
  5. (For bugs only) File a bug report, and hope it gets picked up in one of the pre-release bug fixing sprints. This is basically the same as option 2 – expect that in this case someone else (the QGIS steering committee) is paying for the development time. There’s no way of guaranteeing that your bug will get fixed during this time though, so it’s not a particularly reliable approach if the fix is critical for you.

Finally, there’s two more very ineffective approaches:

  1. File a bug report/feature request, and wait. This isn’t very effective, because what you’re doing is basically the same as 1-4 above, but just waiting for someone else to either do the work or sponsor the changes. This might happen in a week, or might take 10 years.
  2. Complain about something and hope for the best. This is… not very effective. No-one is particularly motivated to help out someone who is being a jerk.

That’s it. Those are the ONLY ways changes get made in QGIS. There’s no other magical short-cuts you can take. Some of these approaches are much more effective than others, and some require skills or resources which may not be available. If you want to see something change in QGIS, you need to take a look at these options and decide for yourself which best meets your needs. But please, just don’t choose option 7!

Update: a follow up to this article was published


OSM turn restriction QA with QGIS

Wrong navigation instructions can be annoying and sometimes even dangerous, but they happen. No dataset is free of errors. That’s why it’s important to assess the quality of datasets. One specific use case I previously presented at FOSS4G 2013 is the quality assessment of turn restrictions in OSM, which influence vehicle routing results.

The main idea is to compare OSM to another data source. For this example, I used turn restriction data from the City of Toronto. Of the more than 70,000 features in this dataset, I extracted a sample of about 500 turn restrictions around Ryerson University, which I had the pleasure of visiting in 2014.

As you can see from the following screenshot, OSM and the city’s dataset agree on 420 of 504 restrictions (83%), while 36 cases (7%) are in clear disagreement. The remaining cases require further visual inspection.


The following two examples show one case where the turn restriction is modelled in both datasets (on the left) and one case where OSM does not agree with the city data (on the right).
In the first case, the turn restriction (short green arrow) tells us that cars are not allowed to turn right at this location. An OSM-based router (here I used therefore finds a route (blue dashed arrow) which avoids the forbidden turn. In the second case, the router does not avoid the forbidden turn. We have to conclude that one of the two datasets is wrong.

turn restriction in both datasets missing restriction in OSM?

If you want to learn more about the methodology, please check Graser, A., Straub, M., & Dragaschnig, M. (2014). Towards an open source analysis toolbox for street network comparison: indicators, tools and results of a comparison of OSM and the official Austrian reference graph. Transactions in GIS, 18(4), 510-526. doi:10.1111/tgis.12061.

Interestingly, the disagreement in the second example has been fixed by a recent edit (only 14 hours ago). We can see this in the OSM way history, which reveals that the line direction has been switched, but this change hasn’t made it into the routing databases yet:

now before

This leads to the funny situation that the oneway is correctly displayed on the map but seemingly ignored by the routers:


To evaluate the results of the automatic analysis, I wrote a QGIS script, which allows me to step through the results and visually compare turn restrictions and routing results. It provides a function called next() which updates a project variable called myvar. This project variable controls which features (i.e. turn restriction and associated route) are rendered. Finally, the script zooms to the route feature:

def next():
    f =
    id = f['TURN_ID']
    print "Going to %s" % (id)
    if iface.mapCanvas().scale() < 500:

layer = iface.activeLayer()
features = layer.getFeatures()

You can see it in action here:

I’d love to see this as an interactive web map where users can have a look at all results, compare with other routing services – or ideally the real world – and finally fix OSM where necessary.

This work has been in the making for a while. I’d like to thank the team of who’s routing service I used (and who recently added support for North America) as well as my colleagues at Ryerson University in Toronto, who pointed me towards Toronto’s open data.

One “add” button to rule them all

Reducing the number of “Add layer” buttons in the QGIS GUI is a commonly voiced wish. Multiple approaches have been discussed but no decision has been made so far. One idea is to use the existing browser functionality to replace the “Add layer” dialogs. Others are envisioning completely novel approaches.

Since the topic came up again today on Twitter, I decided to implement a quick & dirty version of a unified Add layer button. This way, I can comfortably reduce my Layer toolbar to three buttons using Settings | Customization …



I pretty much just kept the “Create new layer” button and the “Add delimited text layer” button because, as far as I know, there is no way to call the dialog from the browser. (Instead, CSVs are opened with OGR, which doesn’t have nearly as many nice features.)

And here it is in action:

(I recommend to undock the Browser panel to get the dialog-like behavior that you see in the video.)

To install the plugin: download it and unzip it into your QGIS plugin folder, then activate it in the plugin manager.

I would love to hear what you think about this UX experiment.

Exploring CKAN data portals with QGIS

CKAN is for data portals what QGIS is for GIS. The project describes itself as

CKAN is a powerful data management system that makes data accessible – by providing tools to streamline publishing, sharing, finding and using data. CKAN is aimed at data publishers wanting to make their data open and available.

Many open (government) data platforms rely on CKAN and while the web interface is pretty good, there’s still the hassle of finding and downloading the data using a web browser.

This is where the QGIS CKAN-Browser plugin comes in useful. The plugin has been developed by BergWerkGIS for the state of Carinthia, Austria and added to the public plugin repo earlier this year. CKAN-Browser comes preconfigured with some Austrian and European CKAN URLs for testing, so you can get going really quickly. It is easy to search for specific datasets or explore the portal’s data categories and it is just one click to download and load the data into your QGIS map:

Screenshot 2016-06-26 22.25.00

Here’s a quick demo of loading a vector dataset as well as raster tiles:

For the full usage guide, visit the plugin’s Github page.

It’s great to see how well CKAN and QGIS can play together to enable seamless access to open data!

Traveltime routing & catchment extension for the QGIS IDF router

As announced in Salzburg a few days ago, I’m happy to present the lastest enhancement to my IDF router for QGIS: travel time routing and catchment computation.

Travel times for pedestrians and cyclists are computed using constant average speeds, while car travel times depend on the speed values provided by the road network data.

Catchment computations return the links that can be traversed completely within the given time (or distance limit). The current implementation does not deal with links at the edge of the catchment area, which can only be traversed partially.

Loading the whole network (2.7GB unzipped IDF) currently requires around 10GB of memory. One of the next plans therefore is to add a way to only load features within a specified bounding box.

Plans to turn this into a full-blown plugin will most likely have to wait for QGIS 3, which will ship with Python 3 and other updated libraries.

Screenshot 2016-07-17 22.04.54

Slides & workshop material from #QGISConf2016

If you could not make it to Girona for this year’s QGIS user conference, here’s your chance to catch up with the many exciting presentations and workshops that made up the conference program on May 25-26th:

(Some resources are still missing but they’ll hopefully be added in the coming days.)

Update: Now you can also watch the talks online or even download them.

Thanks to everyone who was involved in making this second QGIS user conference a great experience for all participants!

QGIS workshops at FOSSGIS

We are looking forward to a hot geo summer here in Central Europe with both the German FOSSGIS (this year in conjunction with the annual AGIT conference) and the international FOSS4G just a few weeks away. It’s going to be exciting, and I still have a lot of talks (and a keynote) to prep for both events ;-)

If you speak German and want to enhance your geo skills, the FOSSGIS program offers some great opportunities and there is still the chance to sign up for a couple of great FOSSGIS workshops:

Of course the program also features many non-QGIS workshops. If I’d have to pick one of them, it would most certainly be Marc Jansen’s and Andreas Hocevar’s OpenLayers 3 workshop because it’s always great to get the latest information first hand, directly from the developers.

Online registration closes on June 25th.

QGIS style dock – Part 2 – Plugin panels

In part 1 I talked about the new style dock and the in built functions it has in this post I would like to cover how you can extend that dock using plugin panels.

While building the dock it became evident that being able to add your own panels with be super neat, why lock the user to what styling controls we have built into core.

After one, or two, API iterations it is now possible to add your own panels to the style dock.

First we need to make a new widget using QgsLayerStylingPanel

class CustomPanel(QgsLayerStylingPanel):
    def __init__(self, layer, canvas, parent):
        super(CustomPanel, self).__init__(layer, canvas, parent)
        self.layer = layer

    def apply(self):

then we need to create a factory object (QgsLayerStylingPanelFactory) which will hold the metadata for the panel widget, things like icon, title, and the widget it self as required. The factory object looks like this:

class PanelFactory(QgsLayerStylingPanelFactory):
    def icon(self):
        return QIcon(r&quot;F:\icons\SVG\book.svg&quot;)

    def title(self):
        return &quot;&quot;

    def supportsLayer( self, layer):
        return layer.type() == QgsMapLayer.VectorLayer

    def createPanel(self, layer, canvas, parent):
        return CustomPanel(layer, canvas, parent)

# Also make a instance and tell the style dock about it
# make sure you keep a instance of the the factory around
factory = PanelFactory()

You can also see we have a supportsLayer() method. This must return True if the layer can be supported for the widget, if the layer isn’t support it’s not shown in the layer style dock. We also have the createPanel method which just returns the widget, you could also use this method to return different widgets based on layer type if you needed. This createPanel method will be called any time the item is selected in the left panel of the style dock. Using the above code we will see a new icon on the side panel


Remember, the create method is called any time this new item is selected.    If your widget is expensive to create you can create a cache here.

Now lets add some logic.  As an example I’m going to load the style xml and show it in the panel. Adding some logic to the __init__ method of the CustomPanel class

class CustomPanel(QgsLayerStylingPanel):
    def __init__(self, layer, canvas, parent):
        super(CustomPanel, self).__init__(layer, canvas, parent)
        self.layer = layer

        # Create the editor and set the xml from the layer.
        self.editor = QgsCodeEditorHTML()
        doc = QDomDocument( &quot;style&quot; ) 
        rootNode = doc.createElement( &quot;qgis&quot; )
        doc.appendChild( rootNode )
        iface.activeLayer().writeStyle( rootNode, doc, &quot;&quot;)
        xml = doc.toString()


Nifty.  Now can we 1 UP it and make it live edit?  Sure can!  The style dock will call apply() whenever we raise the widgetChanged signal.  We can just connect this to the text changed event and add some logic to the apply method.

class CustomPanel(QgsLayerStylingPanel):
    def __init__(self, layer, canvas, parent):
        super(CustomPanel, self).__init__(layer, canvas, parent)

    def apply(self):
        # Read the xml and set it back to the style.
        doc = QDomDocument( &quot;style&quot; ) 
        node = doc.documentElement()
        self.layer.readStyle(node, &quot;&quot;)



Pro Tip: Raise widgetChanged whenever you need to tell the style dock to trigger the apply method. The style state of the layer will also be saved to the undo stack so you don’t have to worry about that.

This is just an example, hand editing xml is well gross, but I’m sure you can see great uses for being able to expand the style dock.

Filed under: Open Source, qgis

QGIS style dock – Part 1 – Live Styles!

This post is part of a series exploring the new style dock.

  • Part 1 – Styles
  • Part 2 – Plugin pages
  • Part 3 – New panel API

A while ago did a post about the new style dock in QGIS. The first stage was getting labels working and then moving on to styles. After many iterations of the UIs and the APIs I’m pretty happy with the release state of the dock. We now have styles (vector and raster), labels, saved styles, undo redo, and plugin support (yep!)

Of all the features I have added to QGIS this is my favorite. Nothing has made me feel more productive then working on this feature and seeing the gains it allows in day to day work.

If you haven’t used the style dock yet I would strongly encourage you to grab the nightly QGIS builds and give it a crack, F7 to open anytime, or use the paint brush icon on the layers panel.   I’m not bragging when I say that it will change your life in QGIS for the better, it has become a part of my daily workflow. No going back!

Dock break down


As you can see in the image there is a few main things in the dock, the layer selection, style options selector (come back to this later), undo/redo, live update and apply.

Live Updates

One of the key things for me when doing this dock was instant feedback. I really hated the open close, change, apply, repeat workflow of the old dialogs.  Every widget in the dock can request a redraw on change so you can see feedback instantly in the canvas.  This might not always be what you want so you can disable it for those cases and use manual apply.

Undo Stack

Live updates come with a risk. What happens if you apply something you didn’t mean. There is no cancel button. Well not to fear we now have a undo/redo stack.  Any style change will now add an entry to the style undo stack so you can rollback and forward any changes. Undo/Redo now allows for fearless style changes, so style away to your hearts content and rollback anything you don’t like.

I will also add that the undo stack is stored on the layer object itself, so closing the dock doesn’t clear the stack nor does changing the active layer. You can also access the stack via the Python bindings if needed.

Style Options

On the side of the dock we have the different style options.  These buttons change the style options in the main panel.

Vector Style Options
  • Style
  • Label
  • Saved styles
  • Undo/Redo
Raster Style Options
  • Style
  • Transparency
  • Histogram
  • Saved styles
  • Undo/Redo

The Saved Styles and Undo/Redo will always be the last in the stack regardless of the active layer type.

Style UIs (Note: GIF heavy section)

Almost all the widgets have been tweaked to allow for better dock layout. Widgets are now in a more uniform layout which flows better when moving around in the dock and just generally look better.


When I talked about live updates before this applies to everything, even the data defined buttons.  Any changes in those will be reflected into the canvas without any extra clicks.


Changing renderers is now simple and quick. You go from nothing to seeing instant results in seconds.


A excellent side effect of the live updates is workflows that were never exposed before and now possible. Using the graduated renderer histogram for example. As the histogram allows for live edits we can now update the map on the fly from adjusting the histogram.


Style UIs (Raster)

As soon as I finished vectors it became pretty evident that raster layers were going to be the next main thing to move.   So the style dock fully supports raster styling.



For the final trick. Here we have the undo/redo stack in action. Unlimited undo/redo  on all layers when changing styles. Fearless change he we come


Trying to find a picture to sum up my feelings about the style dock and I think this fits

but of course I’m super bias.

Stay tuned for Part 2 where I talk about adding your own style panels to the style dock.

Filed under: Open Source, qgis

Gaining more WMS speed through enabling the QGIS cache directory

Interestingly the WMS caching is not enabled by default in QGIS. To better enjoy WMS/WMS-C/WMTS connections – if you have some disk space to dedicate – it is a good idea to enable the cache in these few steps:

Go to the menu entry Settings >> Options:

Enabling the QGIS WMS cache - step 1

Enabling the QGIS WMS cache – step 1

Go to tab “Network“. Therein, in “Cache settings“, select the “Directory” and choose a folder for the cache files. Be sure that there is free space for lots of megabytes can be stored there over time. And this directory should ideally be located on a fast disk (if you have several).

Here I choose the existing “tmp/” folder in my HOME directory and create inside a new folder “qgis_wms_cache”:

Enabling the QGIS WMS cache - step 2

Enabling the QGIS WMS cache – step 2: create new “qgis_wms_cache” cache folder

Eventually we change the “Default expiration period for WMS-C/WMTS tiles (hours)” to more than 24 hours (as it would be rather useless…). Here I change to 24*30 = 720 hours. And the cache size we increase as well, here to 250MB (written as 250000 since it is to be given in kilobytes):

Enabling the QGIS WMS cache - step 3

Enabling the QGIS WMS cache – step 3: increase expiration period for tiles and cache size

Now we press “OK” and close the dialog. Time to try out a WMS service, zoom back and forth… and:

The post Gaining more WMS speed through enabling the QGIS cache directory appeared first on GFOSS Blog | GRASS GIS Courses.

Speeding up QGIS build times with Ninja

As a developer, feedback is important when you are working.  The quicker you have the feedback the quicker you can fix the issues.  This doesn’t just apply to feedback from users/clients but also from your tooling.

Finding a new tool that increases my productivity is one of the best feelings, and this is one of those cases.   I was told about using Ninja for building instead Make, Visual Studio, Jom (Qt Build Tool).

If you are not a developer and don’t know what those tools are, they are what we use to build and compile all the code in QGIS.  If this step is slow the feedback loop is slow and it becomes annoying.  Improving this feedback loop greatly increases your workflow and happiness, and by happiness I really do mean that.

Ninja is one of these tools that did this. It’s optimized to be fast.  It does very little work in order to be faster any time it can.  Ninja was built by a developer on the Google Chrome team in order to improve their build times (read the history here)

Building QGIS with Ninja is super easy:

Install Ninja from package manager or using the ninja.exe (the whole tool is a single exe) if you are on windows

cd qgis-src
mkdir ninja-build
cd ninja-build
ccmake -GNinja ..


You can build just the targets you need using

ninja qgis
ninja pycore


The ccmake setup generates the file that ninja uses. Myself and Matthias Kuhn have already patched our QGIS cmake files to handle any odd things that got generated – only a handful of things which was nice

The best thing I find about Ninja is how smart it is on knowing if it needs to build something or not, and this is the point that I find other tools fail on. They spend ages wasting time looking for what to do. Ninja knows it in a instant.

When running Ninja with no code changes I get this (on Windows):

21:18:54: Running steps for project qgis2.15.0...
21:18:54: Starting: &quot;C:\QtCreator\bin\ninja.exe&quot; qgis
ninja: no work to do.
21:18:54: The process &quot;C:\QtCreator\bin\ninja.exe&quot; exited normally.
21:18:54: Elapsed time: 00:00. 

Not even a second. If I did the same with VS or JOM I could have written this post before it finished working out what to do.

Here is what happens changing a single file:

21:19:48: Running steps for project qgis2.15.0...
21:19:48: Starting: &quot;C:\QtCreator\bin\ninja.exe&quot; qgis
[1/6] Building CXX object src\core\CMakeFiles\qgis_core.dir\raster\qgshillshaderenderer.cpp.obj
[2/6] Linking CXX shared library output\bin\qgis_core.dll
21:19:51: The process &quot;C:\QtCreator\bin\ninja.exe&quot; exited normally.
21:19:51: Elapsed time: 00:03.

It’s super impressive. Even a cold build on Windows is shorter now. On Linux it’s even faster due to faster disk access in Linux vs Windows

If you build QGIS form source I would highly recommend giving it a crack because I know you will love it.

Filed under: Open Source, qgis

How to create round maps in Print Composer

If you follow me on Twitter, you’ve probably seen previews of my experiments with round maps. These experiments were motivated by a recent question on GIS.stackexchange whether this type of map can be created in QGIS and while it’s not very convenient right now, it is definitely possible:

All maps in this post are created using data from the Quantarctica project.

I’ve been planing to try the Quantarctica datasets for a long time and this use case is just perfect. When you download and open their project, you’ll see that they have already clipped all datasets to a circle around Antarctica:

Quantarctica project with some custom styling

Quantarctica project with some custom styling

Since the map of the full extent of the dataset is already clipped to a circle, the overview map is easy to deal with. The detail map on the other hand is rectangular by default:


Since we cannot change the shape of the map item, we have to use a mask instead. To create a circular mask, we can add an ellipse shape:


The main challenge when creating the mask is that there is no inverted polygon renderer for shapes in print composer. I’ve evaluated to workarounds: First, I created a style with a wide white outline that would cover all map parts outside the circle shape. But this solution slowed the print composer down a lot. An alternative, which doesn’t suffer from this slowdown is using draw effects:


In particular, I created a big outer glow effect:


Note that the effect only works if the symbol itself is not transparent. That’s why I set the symbol fill to black and used the Lighten blending mode:


Voilà! Both maps appear are nicely circular.

It is worth noting though that this workaround has a downside: it is not possible to create automatic grids/graticules for these maps. The graticule in the overview map only works because it is a layer in the main project that was already clipped to the circular shape.

Finally, you can add more depth to your map by adding shadows. To create the shadow effect, I added additional ellipse items which are styled with a drop shadow draw effect. If you only enable the drop shadow effect, you will notice that the shadow is cut off at the ellipse bounding box. To avoid this undesired effect, you can add a transform effect, which reduces the size of the drawn shape and it’s shadow so that the shadow fits into the bounding box:


It requires some manual adjustments to place the shadow at the optimal location on top of the mask:


Add another ellipse to create the shadow for the overview map.

For more cartography tips and tricks check my new book QGIS Map Design or join my QGIS training courses.

Agenda for 5th QGIS user group – Scotland

scottish thistleThe 5th QGIS user group meeting in Scotland takes place next Wednesday at the University of Glasgow.  It is being hosted by the School of Geographical and Earth Sciences and has been generously sponsored by thinkWhere and Ordnance Survey.  You can find the draft programme of talks and presentations here: 5th-QGIS-user-group-programme

All tickets are now gone but get on the waitlist and you may be lucky.

See you all there!

Interview: QGIS in journalism

Last year, I published the short post QGIS on the rise with journalists showcasing how QGIS is used by journalists with examples from the Los Angeles Times and Financial Times.

The latest QGIS case study now features an interview with Steven Bernard (Interactive Design Editor at the Financial Times) by A. Neumann and T. Sutton.

QGIS is now an integral part of our mapping workflow. (…) I would say 80% of our maps are now produced in QGIS. read more …

It’s great to see all the great examples of QGIS used to communicate international news. Thanks to everyone involved in this interview for sharing this case study with the community!

Styling maps in QGIS is better when it’s interactive

I’m sure you are all well aware of my hate of blocking dialogs, and when it comes to styling QGIS has a few and they annoy me to no end. With new fancy map making tools like MapBox and CartoDB all having nice non blocking styling options it’s about time QGIS followed suit to bring better control and faster workflows to users.

The first stage of the dock is complete, pending feedback of course, and merged into master.

Introducing the map styling dock:

2016-04-19 20_27_00-Action center

Having the style (label only at the moment) options in a dock widget opens up some really nice workflows to map styling.

Firstly, now you don’t have to do the Open -> Change Setting -> Apply -> Close -> Open dance each time you want to change a layer style.  The dock is linked to the active layer in the legend so you can move around freely, update settings, and move on.

Second, we can now have a great workflow and allow for live updating. Yes you did read that right, it will live update the map as you change values. How bloody great is that!  Reducing the feedback loop is always the best.  If it can be done live, do it live.  There is a Reset button if you make a mistake.

Third, all styling options will now live in a single location going forward. Once we have moved style, diagrams, blend modes, it will be a one stop shop for styles with no annoying dialogs getting in the way.

In QGIS 2.14 we also have this awesome feature for rule based labels, however that added another dialog, and I wasn’t going move to a dock just to have another dialog block me two steps down the road. So now all the rules based labels dialogs are panels inside the main dock. When adding a new rule it will show the rule editor, and the list when not.  Remember how I said the dock updates the map live, well that also applies when you add/update rules.  The dock will update the canvas as the rule changes even before you hit save on the rule

2016-04-19 20_48_36-Action center

2016-04-19 20_48_28-Action center

The new styling dock is in master now, although might not be in the nightly build for a day or so.

You can check out some videos of the dock in action here:

Super keen on any feedback and ideas anyone might have.  Give it a try and let me know what you think.

EDIT: I would also like to add that what I have started/done is only possible because of the great work that has been done before me. Big thanks to all the people that have done work to enable me to make this feature,  label settings, threaded rendering, data defined buttons, etc.

Filed under: Open Source, qgis Tagged: qgis

  • <<
  • Page 2 of 32 ( 634 posts )
  • >>
  • qgis

Back to Top