Page 1 of 1 (4 posts)

  • talks about »
  • remote sensing

Tags

Last update:
Thu Jul 30 22:00:09 2015

A Django site.

QGIS Planet

Compiling OTB Orfeo ToolBox software on Centos/Scientific Linux

The Orfeo ToolBox (OTB), an open-source C++ library for remote sensing images processing, is offering a wealth of algorithms to perform Image manipulation, Data pre-processing, Features extraction, Image Segmentation and Classification, Change detection, Hyperspectral processing, and SAR processing.

Since there is no (fresh) RPM package available for Centos or Scientific Linux, here some quick hints (no full tutorial, though) how to get OTB easily locally compiled. We are following the Installation Chapter.

Importantly, you need to have some libraries installed including GDAL. Be sure that it has been compiled with the “–with-rename-internal-libtiff-symbols” and ” –with-rename-internal-libgeotiff-symbols” flags to avoid namespace collision a.k.a segmentation fault of OTB as per “2.2.4 Building your own qualified Gdal“. We’ll configure and build with the GDAL-internal Tiff and Geotiff libraries that supports BigTiff files

# configure GDAL
./configure \
 --without-libtool \
 --with-geotiff=internal --with-libtiff=internal \
 --with-rename-internal-libtiff-symbols=yes \
 --with-rename-internal-libgeotiff-symbols=yes \
...
make
make install

The compilation of the OTB source code requires “cmake” and some other requirements which you can install via “yum install …”. Be sure to have the following structure for compiling OTB, i.e. store the source code in a subdirectory. The binaries will then be compiled in a “build” directory parallel to the OTB-SRC directory:

OTB-4.4.0/
|-- build/
`-- OTB-SRC/
    |-- Applications/
    |-- CMake/
    |-- CMakeFiles/
    |-- Code/
    |-- Copyright/
    |-- Examples/
    |-- Testing/
    `-- Utilities/

Now it is time to configure everything for OTB. Since I didn’t want to bother with “ccmake”, below the magic lines to compile and install OTB into its own subdirectory within /usr/local/. We’ll use as many internal libraries as possible according to the table in the installation guide. The best way is to save the following lines as a text script “cmake_otb.sh” for easier (re-)use, then run it:

#!/bin/sh

OTBVER=4.4.0
(
mkdir -p build
cd build

cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr/local/otb-$OTBVER \
      -DOTB_USE_EXTERNAL_ITK=OFF -DOTB_USE_EXTERNAL_OSSIM=OFF \
      -DOTB_USE_EXTERNAL_EXPAT=OFF -DOTB_USE_EXTERNAL_BOOST=OFF \
      -DOTB_USE_EXTERNAL_TINYXML=OFF -DOTB_USE_EXTERNAL_LIBKML=OFF \
      -DOTB_USE_EXTERNAL_MUPARSER=OFF \
       ../OTB-SRC/

make -j4
# note: we assume to have write permission in /usr/local/otb-$OTBVER
make install
)

That’s it!

In order to use the freshly compiled OTB, be sure to add the new directories for the binaries and the libraries to your PATH and LD_LIBRARY_PATH variables, e.g. in $HOME/.bashrc:

export PATH=$PATH:/usr/local/bin:/usr/local/otb-4.4.0/bin
export LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64/:/usr/local/otb-4.4.0/lib/otb/

Enjoy OTB! And thanks to the OTB developers for making it available.

The post Compiling OTB Orfeo ToolBox software on Centos/Scientific Linux appeared first on GFOSS Blog | GRASS GIS Courses.

New stable release of GRASS GIS 7.0.0!

The GRASS GIS Development team has announced the release of the new major version GRASS GIS 7.0.0. This version provides many new functionalities including spatio-temporal database support, image segmentation, estimation of evapotranspiration and emissivity from satellite imagery, automatic line vertex densification during reprojection, more LIDAR support and a strongly improved graphical user interface experience. GRASS GIS 7.0.0 also offers significantly improved performance for many raster and vector modules: “Many processes that would take hours now take less than a minute, even on my small laptop!” explains Markus Neteler, the coordinator of the development team composed of academics and GIS professionals from around the world. The software is available for Linux, MS-Windows, Mac OSX and other operating systems.

Detailed announcement and software download:
http://grass.osgeo.org/news/42/15/GRASS-GIS-7-0-0/

About GRASS GIS
The Geographic Resources Analysis Support System (http://grass.osgeo.org/), commonly referred to as GRASS GIS, is an open source Geographic Information System providing powerful raster, vector and geospatial processing capabilities in a single integrated software suite. GRASS GIS includes tools for spatial modeling, visualization of raster and vector data, management and analysis of geospatial data, and the processing of satellite and aerial imagery. It also provides the capability to produce sophisticated presentation graphics and hardcopy maps. GRASS GIS has been translated into about twenty languages and supports a huge array of data formats. It can be used either as a stand-alone application or as backend for other software packages such as QGIS and R geostatistics. It is distributed freely under the terms of the GNU General Public License (GPL). GRASS GIS is a founding member of the Open Source Geospatial Foundation (OSGeo).

The post New stable release of GRASS GIS 7.0.0! appeared first on GFOSS Blog | GRASS GIS Courses.

Landsat 8 captures Trentino in November 2014

The beautiful days in early November 2014 allowed to get some nice views of the Trentino (Northern Italy) – thanks to Landsat 8 and NASA’s open data policy:

Landsat 8: Northern Italy 1 Nov 2014
Landsat 8: Northern Italy 1 Nov 2014

Trento captured by Landsat8
Trento captured by Landsat8

Landsat 8: San Michele - 1 Nov 2014
Landsat 8: San Michele – 1 Nov 2014

The beauty of the landscape but also the human impact (landscape and condensation trails of airplanes) are clearly visible.

All data were processed in GRASS GIS 7 and pansharpened with i.fusion.hpf written by Nikos Alexandris.

The post Landsat 8 captures Trentino in November 2014 appeared first on GFOSS Blog | GRASS GIS Courses.

Processing Landsat 8 data in GRASS GIS 7: RGB composites and pan sharpening

banner_pansharpening

In our first posting (“Processing Landsat 8 data in GRASS GIS 7: Import and visualization“) we imported a Landsat 8 scene (covering Raleigh, NC, USA). In this exercise we use Landsat data converted to reflectance with i.landsat.toar as shown in the first posting.

Here we will try color balancing and pan-sharpening, i.e. applying the higher resolution panchromatic channel to the color channels, using i.landsat.rgb.

1. Landsat 8 – RGB color balancing: natural color composites

After import, the RGB (bands 4,3,2 for Landsat 8) may look initially less exciting than expected.This is easy to fix by a histogram based auto-balancing of the RGB color tables.

landsat8_rgb_composite_unbalanced

To brighten up the RGB composite, we can use the color balancing tool of GRASS GIS 7:

grass7_landsat_rgb0

As input, we specify the bands 4, 3, and 2:

grass7_landsat_rgb1

Using a “Cropping intensity (upper brightness level)” of 99 (percent), the result look as follows:

landsat10_rgb_composite_autobalance_99percent_crop

For special purposes or under certain atmospheric/ground conditions it may be useful to make use of the functions “Preserve relative colors, adjust brightness only” or “Extend colors to full range of data on each channel” in the “Optional” tab of i.landsat.rgb.

landsat9_rgb_composite_preserve_relative_colors

You will need to experiment since the results depend directly on the image data.

2. Landsat 8 pansharpening

Pansharpening is a technique to merge the higher geometrical pixel resolution of the panchromatic band (Band 8) with the lower resolution color bands (Bands 4, 3, 2).

GRASS GIS 7 offers several methods through the command i.pansharpen.

1) Brovey transform:

landsat8_pansharpen_brovey1

This module runs in multi-core mode parallelized. The management of the resolution (i.e., apply the higher resolution of the panchromatic band) is performed automatically.

landsat8_pansharpen_brovey2

2. IHS transform

Here we select as above the bands in the i.pansharpen interface but use the “ihs” method.

landsat8_pansharpen_ihs1

HINT: If the colors should look odd, then apply i.landsat.rgb to the pan-sharpened bands (see above).

Color-adjusted IHS pansharpening (with “Cropping intensity: strength=99″):

landsat8_pansharpen_ihs_color_adjusted

Comparison of Landsat 8 RGB composite (39m) and IHS pansharpened RGB composite (15m):

landsat8_rgb432_color_adjusted_zoom landsat8_rgb432_pansharpen_ihs_color_adjusted_zoom

3. PCA transform

Here we select as above the bands in the i.pansharpen interface but use the “pca” method.

landsat8_pansharpen_pca1

Likewise other channels may be merged with i.pansharpen, even when originating from different sensors.

3. Conclusions

Overall, the IHS pansharpening method along with auto-balancing of colors appears to perform very well with Landsat 8.

  • Page 1 of 1 ( 4 posts )
  • remote sensing

Back to Top

Sponsors