QGIS Planet

GDAL 2.1 packaged for Fedora 23 and 24

GDAL logoThe new GDAL 2.1 is now also packaged for Fedora 23 and 24 which is possible due to the tireless efforts of various Fedora packagers.

Repo: https://copr.fedorainfracloud.org/coprs/neteler/GDAL/

Installation Instructions:

su

# Fedora 23+24:
# install this extra repo
dnf copr enable neteler/GDAL

# A) in case of update, simply
dnf update

# B) in case of new installation (gdal-devel is optional)
dnf install gdal gdal-python gdal-devel

The post GDAL 2.1 packaged for Fedora 23 and 24 appeared first on GFOSS Blog | GRASS GIS Courses.

GDAL/OGR 1.11.0 released

The new version 1.11.0  of GDAL/OGR (http://www.gdal.org/) which offers major new features has been released. GDAL/OGR is a C++ geospatial data access library for raster and vector file formats, databases and web services.  It includes bindings for several languages, and a variety of command line tools.

Highlights:

More complete information on the new features and fixes in the 1.11.0 release can be found at http://trac.osgeo.org/gdal/wiki/Release/1.11.0-News

The new release can be downloaded from:

The post GDAL/OGR 1.11.0 released appeared first on GFOSS Blog | GRASS GIS Courses.

50th ICA-OSGeo Lab established at Fondazione Edmund Mach (FEM)

We are pleased to announce that the 50th ICA-OSGeo Lab has been established at the GIS and Remote Sensing Unit (Piattaforma GIS & Remote Sensing, PGIS), Research and Innovation Centre (CRI), Fondazione Edmund Mach (FEM), Italy. CRI is a multifaceted research organization established in 2008 under the umbrella of FEM, a private research foundation funded by the government of Autonomous Province of Trento. CRI focuses on studies and innovations in the fields of agriculture, nutrition, and environment, with the aim to generate new sharing knowledge and to contribute to economic growth, social development and the overall improvement of quality of life.

The mission of the PGIS unit is to develop and provide multi-scale approaches for the description of 2-, 3- and 4-dimensional biological systems and processes. Core activities of the unit include acquisition, processing and validation of geo-physical, ecological and spatial datasets collected within various research projects and monitoring activities, along with advanced scientific analysis and data management. These studies involve multi-decadal change analysis of various ecological and physical parameters from continental to landscape level using satellite imagery and other climatic layers. The lab focuses on the geostatistical analysis of such information layers, the creation and processing of indicators, and the production of ecological, landscape genetics, eco-epidemiological and physiological models. The team pursues actively the development of innovative methods and their implementation in a GIS framework including the time series analysis of proximal and remote sensing data.

The GIS and Remote Sensing Unit (PGIS) members strongly support the peer reviewed approach of Free and Open Source software development which is perfectly in line with academic research. PGIS contributes extensively to the open source software development in geospatial (main contributors to GRASS GIS), often collaborating with various other developers and researchers around the globe. In the new ICA-OSGeo lab at FEM international PhD students, university students and trainees are present.

PGIS is focused on knowledge dissemination of open source tools through a series of courses designed for specific user requirement (schools, universities, research institutes), blogs, workshops and conferences. Their recent publication in Trends in Ecology and Evolution underlines the need on using Free and Open Source Software (FOSS) for completely open science. Dr. Markus Neteler, who is leading the group since its formation, has two decades of experience in developing and promoting open source GIS software. Being founding member of the Open Source Geospatial Foundation (OSGeo.org, USA), he served on its board of directors from 2006-2011. Luca Delucchi, focal point and responsible person for the new ICA-OSGeo Lab is member of the board of directors of the Associazione Italiana per l’Informazione Geografica Libera (GFOSS.it, the Italian Local Chapter of OSGeo). He contributes to several Free and Open Source software and open data projects as developer and trainer.

Details about the GIS and Remote Sensing Unit at http://gis.cri.fmach.it/

Open Source Geospatial Foundation (OSGeo) is a not-for-profit organisation founded in 2006 whose mission is to support and promote the collaborative development of open source geospatial technologies and data.

International Cartographic Association (ICA) is the world authoritative body for cartography and GIScience. See also the new ICA-OSGeo Labs website.

Processing Landsat 8 data in GRASS GIS 7: Import and visualization

banner_landsat_rgb

For our analysis example, we’ll obtain (freely – thanks, NASA and USGS!) a Landsat 8 scene from http://earthexplorer.usgs.gov/

First of all, you should register.

1. Landsat 8 download procedure

1. Enter Search Criteria:

  • path/row tab, enter Type WRS2: Path: 16, Row: 35
  • Date range: 01/01/2013 – today
  • Click on the “Data sets >>” button

2. Select Your Data Set(s):

  • Expand the entry + Landsat Archive
        [x] L8 OLI/TIRS
  • Click on the “Results >>” button

(We jump over the additional criteria)

4. Search Results

From the resulting list, we pick the data set:

earthexplorer_selection_lsat8Entity ID: LC80160352013134LGN03
Coordinates: 36.04321,-79.28696
Acquisition Date: 14-MAY-13

Using the “Download options”, you can download the data set (requires login). Select the choice:
[x] Level 1 GeoTIFF Data Product (842.4 MB)

You will receive the file “LC80160352013134LGN03.tar.gz”.

2. Unpacking the downloaded Landsat 8 dataset

To unpack the data, run (or use a graphical tool at your choice):

tar xvfz LC80160352013134LGN03.tar.gz

A series of GeoTIFF files will be extracted: LC80160352013134LGN03_B1.TIF, LC80160352013134LGN03_B2.TIF, LC80160352013134LGN03_B3.TIF, LC80160352013134LGN03_B4.TIF, LC80160352013134LGN03_B5.TIF, LC80160352013134LGN03_B6.TIF, LC80160352013134LGN03_B7.TIF, LC80160352013134LGN03_B8.TIF, LC80160352013134LGN03_B9.TIF, LC80160352013134LGN03_B10.TIF, LC80160352013134LGN03_B11.TIF, LC80160352013134LGN03_BQA.TIF

We may check the metadata with “gdalinfo“:

gdalinfo LC80160352013134LGN03_B1.TIF
Driver: GTiff/GeoTIFF
Files: LC80160352013134LGN03_B1.TIF
Size is 7531, 7331
Coordinate System is:
PROJCS["WGS 84 / UTM zone 17N",
    GEOGCS["WGS 84",
        DATUM["WGS_1984",
            SPHEROID["WGS 84",6378137,298.257223563,
...
Pixel Size = (30.000000000000000,-30.000000000000000)
...

3. Want to spatially subset the Landsat scene first?

If you prefer to cut out a smaller area (subregion), check here for gdal_translate usage examples.

4. Import into GRASS GIS 7

Note: While this Landsat 8 scene covers the area of the North Carolina (NC) sample dataset, it is delivered in UTM rather than the NC's state plane metric projection. Hence we preprocess the data first in its original UTM projection prior to the reprojection to NC SPM.

Using the Location Wizard, we can import the dataset easily into a new location (in case you don't have UTM17N not already created earlier):

grass70 -gui

grass7_loc_wizard1
grass7_loc_wizard2
grass7_loc_wizard3
grass7_loc_wizard4
grass7_loc_wizard5
grass7_loc_wizard6
grass7_loc_wizard7
grass7_loc_wizard8
grass7_loc_wizard9

 

 

 

Now start GRASS GIS 7 and you will find the first band already imported (the others will follow shortly!).

For the lazy folks among us, we can also create a new GRASS GIS Location right away from the dataset on command line:

grass70 -c LC80160352013134LGN03_B10.TIF ~/grassdata/utm17n

5. Importing the remaining Landsat 8 bands

The remaining bands can be easily imported with the raster import tool:

grass7_import1

The bands can now be selected easily for import:

grass7_import2

  • Select "Directory" and navigate to the right one
  • The available GeoTIFF files will be shown automatically
  • Select those you want to import
  • You may rename (double-click) the target name for each band
  • Extend the computation region accordingly automatically

Click on "Import" to get the data into the GRASS GIS location. This takes a few minutes. Close the dialog window then.

In the "Map layers" tab you can select the bands to be shown:

grass7_visualize1

6. The bands of Landsat 8

(cited from USGS)

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) images consist of nine spectral bands with a spatial resolution of 30 meters for Bands 1 to 7 and 9. New band 1 (ultra-blue) is useful for coastal and aerosol studies. New band 9 is useful for cirrus cloud detection. The resolution for Band 8 (panchromatic) is 15 meters. Thermal bands 10 and 11 are useful in providing more accurate surface temperatures and are collected at 100 meters. Approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi).

Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)Launched February 11, 2013 Bands Wavelength (micrometers) Resolution (meters)
Band 1 - Coastal aerosol 0.43 - 0.45 30
Band 2 - Blue 0.45 - 0.51 30
Band 3 - Green 0.53 - 0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85 - 0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11 - 2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100

* TIRS bands are acquired at 100 meter resolution, but are resampled to 30 meter in delivered data product.

7. Natural color view (RGB composite)

Due to the introduction of a new "Cirrus" band (#1), the BGR bands are now 2, 3, and 4, respectively. See also "Common band combinations in RGB" for Landsat 7 or Landsat 5, and Landsat 8.

From Digital Numer (DN) to reflectance:
Before creating an RGB composite, it is important to convert the digital number data (DN) to reflectance (or optionally radiance). Otherwise the colors of a "natural" RGB composite do not look convincing but rather hazy (see background in the next screenshot). This conversion is easily done using the metadata file which is included in the data set with i.landsat.toar:

grass7_landsat_toar0
grass7_landsat_toar1
grass7_landsat_toar2
grass7_landsat_toar3

Now we are ready to create a nice RGB composite:

grass7_landsat_rgb0

grass7_landsat_rgb1

Select the bands to be visually combined:

grass7_visualize2

... and voilà!

grass7_landsat_rgb2

8. Applying the Landsat 8 Quality Assessment (QA) Band

One of the bands of a Landsat 8 scene is named "BQA" which contains for each pixel a decimal value representing a bit-packed combination of surface, atmosphere, and sensor conditions found during the overpass.  It can be used to judge the overall usefulness of a given pixel.

We can use this information to easily eliminate e.g. cloud contaminated pixels. In short, the QA concept is (cited here from the USGS page):

Cited from http://landsat.usgs.gov/L8QualityAssessmentBand.php‎

For the single bits (0, 1, 2, and 3):
0 = No, this condition does not exist
1 = Yes, this condition exists.

The double bits (4-5, 6-7, 8-9, 10-11, 12-13, and 14-15) represent levels of confidence that a condition exists:
00 = Algorithm did not determine the status of this condition
01 = Algorithm has low confidence that this condition exists (0-33 percent confidence)
10 = Algorithm has medium confidence that this condition exists (34-66 percent confidence)
11 = Algorithm has high confidence that this condition exists (67-100 percent confidence).

Detailed bit patterns (d: double bits; s: single bits):
d  Bit 15 = 0 = cloudy
d  Bit 14 = 0 = cloudy
d  Bit 13 = 0 = not a cirrus cloud
d  Bit 12 = 0 = not a cirrus cloud
d  Bit 11 = 0 = not snow/ice
d  Bit 10 = 0 = not snow/ice
d  Bit 9 = 0 = not populated
d  Bit 8 = 0 = not populated
d  Bit 7 = 0 = not populated
d  Bit 6 = 0 = not populated
d  Bit 5 = 0 = not water
d  Bit 4 = 0 = not water
s  Bit 3 = 0 = not populated
s  Bit 2 = 0 = not terrain occluded
s  Bit 1 = 0 = not a dropped frame
s  Bit 0 = 0 = not fill

Usage example 1:  Creating a mask from a bitpattern

We can create a cloud mask (bit 15+14 are set) from this pattern:
cloud:   1100000000000000

Using the Python shell tab, we can easily convert this into the corresponding decimal number for r.mapcalc:

Cited from http://landsat.usgs.gov/L8QualityAssessmentBand.php‎

Welcome to wxGUI Interactive Python Shell 0.9.8

Type "help(grass)" for more GRASS scripting related information.
Type "AddLayer()" to add raster or vector to the layer tree.

Python 2.7.5 (default, Aug 22 2013, 09:31:58) 
[GCC 4.8.1 20130603 (Red Hat 4.8.1-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> int(0b1100000000000000)
49152

Using this decimal value of 49152, we can create a cloud mask:

# set NULL for cloudy pixels, 1 elsewhere:
r.mapcalc "cloudmask = if(LC80160352013134LGN03_BQA == 49152, null(), 1 )"

# apply this mask
r.mask cloudmask

In our sample scene, there are only tiny clouds in the north-east, so no much to be seen. Some spurious cloud pixels are scattered over the scene, too, which could be eliminated (in case of false positives) or kept.

Usage example 2:  Querying the Landsat 8 BQA map and retrieve the bitpattern

Perhaps you prefer to query the BQA map itself (overlay the previously created RGB composite and query the BSA map by selecting it in the Layer Manager). In our example, we query the BQA value of the cloud:

Using again the Python shell tab, we can easily convert the decimal number (used for r.mapcalc) into the corresponding binary representation to verify with the  table values above.

>>> x=61440
>>> print(bin(x & 0xffffffff))
0b1111000000000000

Hence, bits 15,14,13, and 12 are set: cloudy and not a cirrus cloud. Looking at the RGB composite we tend to agree :-) Time to mask out the cloud!

wxGUI menu >> Raster >> Mask [r.mask]

Or use the command line, as shown already above:

# remove existing mask (if active)
r.mask -r

# set NULL for cloudy pixels, 1 elsewhere:
r.mapcalc "cloudmask = if(LC80160352013134LGN03_BQA == 61440, null(), 1 )" --o

# apply the new mask
r.mask cloudmask

The visual effect in the RGB composite is minimal since the cloud is white anyway (as NULL cells, too). However, it is relevant for real calculations such as NDVI (vegetation index) or thermal maps.

We observe dark pixels around the cloud originating from thin clouds. In a subsequent identification/mask step we may eliminate also those pixels with a subsequent filter.

  • Page 1 of 1 ( 4 posts )
  • gdal

Back to Top

Sponsors